News from the theory side

Marco Guzzi

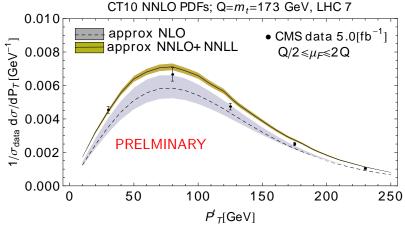
DESY Hamburg

HERAFITTER developers meeting

Outline

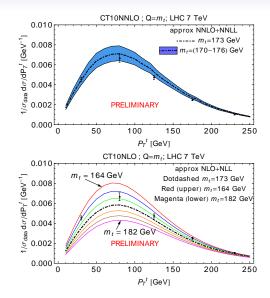
Progress on DESY side: relevant for future developments of the HERAFITTER package

- Numerical implementation of the approx NNLO + NNLL differential cross section for tt (M.G., Sven Moch)
- Issues related to the extraction of the charm quark mass from PDF fits.

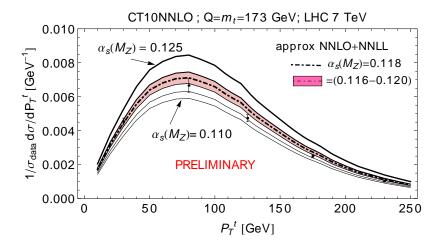

Several discussions at DIS2013.

Differential cross section for $t\bar{t}$ (approx NNLO + NNLL)

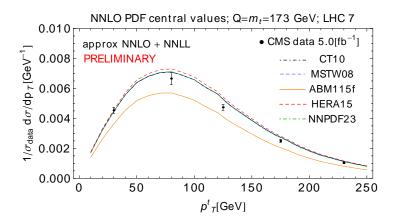
What is it good for?


- precise forthcomig data
- theory @ NLO and approx NNLO sizeable K-factors (perturbative level)
- ▶ non-perturbative parameter \(\alpha_s(M_Z)\), m_t, gluon(x) \(\Rightarrow simultaneous determination \(\Rightarrow global fit predictions!\)
- Tools development:
 - flexible OPEN SOURCE code for experimentalists
 - ▶ possibility of manipulating inputs: $(PP, P\bar{P})$, m_t , mu_F , mu_R , α_s evol., lhapdf interface, perturbative order, logarithmic approximation etc..
 - This computer code will be included into HERAFITTER to explore the extent of the constraints coming from differential and total tt cross section data on PDFs

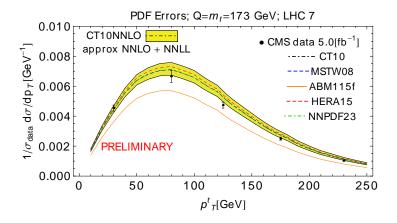
K-factors are large! CMS-TOP-11-013


Error band at NNLO Kidonakis PRD82 (2010) 114030 \approx 2-3%

Dependence on m_t



Similar plot for the rapidity distrib. in the Backup.


 $\alpha_s(M_Z)$ dependence within CT10NNLO PDFs

 P_T^t -differential distribution

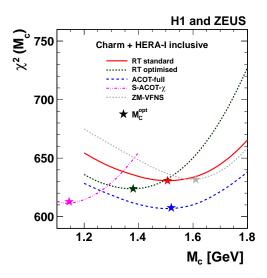
NNLO PDFs preferred m_t value: CT10, MSTW08, NNPDF2.3, $m_t \approx 173 - 175$ GeV; ABM115F $m_t \approx 170$ GeV, HERA15NNLO $m_t \approx 176$ GeV. Similar plot for the rapidity distrib. in the Backup. Estimate of the PDF uncertainty

Current status:

- fine tuning of the code (good pace)
- cross checking against MCFM and similar results from Kidonakis
- scale dependence
- working on a flexible implementation: separate tunes on μ_F, μ_R; "switching points" in α_s evolutions, choice of the hard scale, etc.,

Extraction of m_c from global fits of PDFs

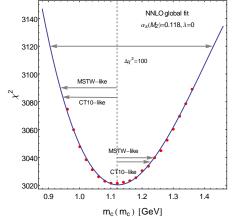
Why is m_c important?


- Global analysis of PDFs of the proton: sensitive to the method by which the heavy-quark masses are included in experiments, especially at $Q \approx m_c$.
- DIS experiments have the best potential to constrain m_c .
- Impact on the extracted PDFs non-negligible: modifications due to heavy-quark treatment have phenomenological consequences for EW precision measurements at the LHC.
- Recent H1-ZEUS measurements (2012), of comb. cross sections on incl. and semi-incl. DIS charm production at HERA: put the tightest constraints on the MS mass of the charm quark

A long standing discussion...

- GMVFN vs FFN scheme
- Differences among m_c best-fits obtained by different PDF groups
- M_c (Pole mass) vs $m_c(m_c)$ (running mass \overline{MS})
- ▶ Differences in the determination of the PDF uncertainties: larger uncertainties on m_c in global analysis
- different methods/criteria of defining $\Delta \chi^2$
- different definitions of "NLO", "NNLO" in different HQ schemes

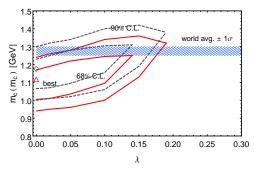
Energy scales of order m_c in heavy-quark schemes


$\mathcal{O}(m_c)$ scales appearing FFN or VF		
	is in FFN ?	is in VFN ?
M_c or $m_c(m_c)$ in exact $\gamma^*g \to c\bar{c}$ in NC DIS	🗸 dominates	dominates
switching scales in $\alpha_s(\mu)^{n_f} o lpha_s(\mu)^{n_f+1}$	\checkmark	\checkmark
switching scales in PDFs evolution	×	\checkmark
kinem. approx. in FE coeff. func.	×	\checkmark
scales in quark-fragmentation into hadrons	\checkmark	\checkmark

From H1 and Zeus paper 1211.1182[hep-ex] published on EPJC (2012)

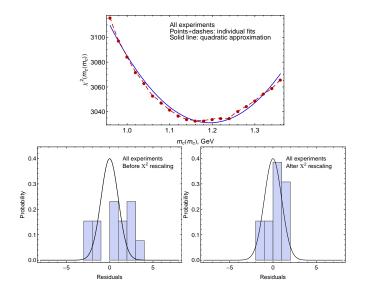
In the S-ACOT- χ NNLO $\mathcal{O}(\alpha_s^2)$ scheme:

PDF uncertainty δm_c [GeV] (90% C.L.)				
$\Delta \chi^2 \le 100$	$\delta m_c = ^{+0.30}_{-0.22}$			
CT10-like	$\delta m_c = ^{+0.11}_{-0.17}$			
MSTW-like	$\delta m_c = ^{+0.12}_{-0.18}$			

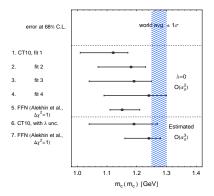


 $m_c(m_c) = 1.12 \text{ GeV}$

charm mass scan. Global χ^2 of the S-ACOT- χ NNLO fit as a function of the $\overline{\rm MS}$ charm mass. Lines with left/right arrows indicate 90% C.L. intervals obtained with different tolerance criteria.


In the S-ACOT- χ NNLO $\mathcal{O}(\alpha_s^2)$ scheme:

Theor. sys. uncer.	DIS scale	$\alpha_s(M_Z)$	λ	χ^2 def.
Parameter range	[Q/2, 2Q]	[0.116, 0.120]	[0, 0.2]	-
$\delta m_c(m_c)$ (GeV)	$^{+0.02}_{-0.02}$	$^{+0.01}_{-0.01}$	$^{+0.14}_{-0}$	$^{+0.06}_{-0}$



Preferred regions for $m_c(m_c)$ vs. the rescaling parameter λ . The best-fit values and confidence intervals are shown for two alternative methods for implementation of correlated systematic errors.

Check $\Delta \chi^2 = 1$ in the global CT10 NNLO fit

Preferred m_c 's with several methods.

At order α_s^2 , the CT10 values are obtained using the full mass conversion formula and "extended T" and "experimental" χ^2 definitions (fit 1 and 2 respectively), and the truncated mass conversion and "extended T" and "experimental" χ^2 definitions (fit 3 and 4). The resulting $m_c(m_c)$ values and 68% C.L. uncertainties in four methods are $1.12^{+0.05}_{-0.11}$, $1.18^{+0.05}_{-0.11}$, $1.19^{+0.06}_{-0.15}$ and $1.24^{+0.06}_{-0.15}$ GeV, respectively.

My conclusions

- Lots of developments are going on and planned to be included in future releases of HERAFITTER
- ► On the long run: potential to be on top of all PDF fitters ⇒ it basically has ingredients that cannot be provided by single PDF fitter groups
- Crucial: because it allows to make comparisons in the same conditions!
- cross check of the impact of HQ schemes on a PDF fit is one example (and it is very important...)
- Implementation S-ACOT- χ at NNLO $\mathcal{O}(\alpha_s^2)$: still on-going...

Back up

$\overline{\mathrm{MS}}$ to the pole mass conversion.

The fit is sensitive to the order of conversion of the $\overline{\text{MS}}$ charm mass $m_c(m_c)$, our input parameter, into the pole mass provided as the parameter by massive two-loop contributions in DIS.

$$\begin{split} m_{Q}^{pole} &= m_{Q}(m_{Q}) \left\{ 1 + \frac{\alpha_{s}(m_{Q}(m_{Q}), N_{f})}{\pi} \frac{4}{3} \right. \\ &+ \frac{\alpha_{s}^{2}(m_{Q}(m_{Q}), N_{f})}{\pi} \Big[13.1454 - 1.04137 N_{f} + \sum_{i=1}^{N_{f}} \Delta(m_{i}(m_{i})/m_{Q}(m_{Q})) \Big] \Big\}, \end{split}$$

with $\Delta(x) = 1.2337 \ x - 0.597 \ x^2 + 0.23 \ x^3$. Chetyrkin (2000).