My homework:

Unitarity constraints on TGCs and QGCs

June, 262013

Basics:

- Higher dimension operators lead to unitarity violation in PT
- Unitarity of the S matrix $S^{\dagger} S=1$ implies
$\operatorname{Im} \mathcal{M}_{\text {elastic }}\left(k_{1} k_{2} \rightarrow k_{1} k_{2}\right)=2 E_{\text {cm }} p_{c m} \sigma_{\text {total }}\left(k_{1} k_{2} \rightarrow\right.$ anything $)$
- using just the elastic channel
$\mathcal{M}(s, t, u)=32 \pi \sum_{\ell} P_{\ell}(\cos \theta) a_{\ell} \longrightarrow\left|a_{\ell}\right| \leq \frac{1}{2}$
with
$a_{\ell}=\frac{1}{64} \int_{-1}^{1} d \cos \theta P_{\ell}(\cos \theta) \mathcal{M}$
$>$ Quartic couplings play in important role: $\mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathrm{L}}^{-} \rightarrow \mathbf{W}_{\mathrm{L}}^{+} \mathbf{W}_{\mathbf{L}}^{-}$
- J=0 partial wave

$$
\mathbf{A}=\mathbf{A}_{4} \frac{\mathbf{E}^{4}}{\mathbf{M}_{\mathbf{W}}^{4}}+\mathbf{A}_{2} \frac{\mathbf{E}^{2}}{\mathbf{M}_{\mathbf{W}}^{\mathbf{2}}}+\cdots
$$

- In the SM
$\mathbf{A}_{4} \propto \mathbf{g} \mathbf{w} \mathbf{w w w}-\mathbf{g}_{\mathbf{W} \mathbf{w z}}^{\mathbf{2}}-\mathbf{g}_{\mathbf{W} \mathbf{w} \gamma}^{\mathbf{2}} \equiv 0$
- H takes part into $\mathbf{A}_{\mathbf{2}}=\mathbf{0}$

Unitarity bounds on dimension-six operators:

$$
\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right), \quad \mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)
$$

$$
\mathcal{O}_{W W W}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\nu \rho} \hat{W}_{\rho}^{\mu}\right] \quad[\mathrm{VVV}, \mathrm{VVV}]
$$

most stringent bounds: [Gounaris et al, hep-ph/9409260;]

$$
\begin{aligned}
& \left|\frac{f_{B}}{\Lambda^{2}}\right| \leq \frac{98}{s} \quad \text { for } \sqrt{s}=2 \mathrm{TeV}\left|\frac{f_{B}}{\Lambda^{2}}\right| \leq 24.5 \mathrm{TeV}^{-2} \\
& \left|\frac{f_{W}}{\Lambda^{2}}\right| \leq \frac{31}{s} \quad \text { for } \sqrt{s}=2 \mathrm{TeV}\left|\frac{f_{W}}{\Lambda^{2}}\right| \leq 7.8 \mathrm{TeV}^{-2} \\
& \left|\frac{f_{W W W}}{\Lambda^{2}}\right| \leq \frac{38}{3 g^{2} s} \quad \text { for } \sqrt{s}=2 \mathrm{TeV}\left|\frac{f_{W W W}}{\Lambda^{2}}\right| \leq 7.5 \mathrm{TeV}^{-2} \\
& \left|\frac{f_{W W}}{\Lambda^{2}}\right| \leq \frac{35.2}{3 g^{2} s}+\frac{4.86}{\sqrt{s} M_{W}} \quad \text { for } \sqrt{s}=2 \mathrm{TeV}\left|\frac{f_{W W}}{\Lambda^{2}}\right| \leq 39.2 \mathrm{TeV}^{-2}
\end{aligned}
$$

in principle no form factor will be needed

Higgs physics already leads to contraints:
[arXiv: | 207. | 344; | 2 | | .4580; | 304.| | 5 |]

$$
\frac{f_{W}}{\Lambda^{2}} \in[-6.7,8.3] \quad \Longrightarrow \sqrt{s} \leq 1.9 \mathrm{TeV}
$$

$$
\frac{f_{B}}{\Lambda^{2}} \in[-23 ., 6.5] \quad \Longrightarrow \sqrt{s} \leq 2.1 \mathrm{TeV}
$$

$\frac{f_{W W}}{\Lambda^{2}} \in[2.6,3.2]$ or $[0.4,0.13] \quad \Longrightarrow \sqrt{s} \leq 3 \mathrm{TeV}$

Unitarity bounds on dimension-eight operators:

$$
\begin{aligned}
\mathcal{L}_{M, 0} & =\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \\
\mathcal{L}_{M, 1} & =\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\nu \beta}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 2} & =\left[B_{\mu \nu} B^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \\
\mathcal{L}_{M, 3} & =\left[B_{\mu \nu} B^{\nu \beta}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 4} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} D^{\mu} \Phi\right] \times B^{\beta \nu} \\
\mathcal{L}_{M, 5} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} D^{\nu} \Phi\right] \times B^{\beta \mu} \\
\mathcal{L}_{M, 6} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} \hat{W}^{\beta \nu} D^{\mu} \Phi\right] \\
\mathcal{L}_{M, 7} & =\left[\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}_{\beta \nu} \hat{W}^{\beta \mu} D^{\nu} \Phi\right]
\end{aligned}
$$

$$
\mathcal{L}_{T, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \hat{W}^{\alpha \beta}\right]
$$

$$
\mathcal{L}_{T, 1}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \times \operatorname{Tr}\left[\hat{W}_{\mu \beta} \hat{W}^{\alpha \nu}\right]
$$

$$
\mathcal{L}_{T, 2}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \times \operatorname{Tr}\left[\hat{W}_{\beta \nu} \hat{W}^{\nu \alpha}\right]
$$

$$
\mathcal{L}_{T, 5}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times B_{\alpha \beta} B^{\alpha \beta}
$$

$$
\mathcal{L}_{T, 6}=\operatorname{Tr}\left[\hat{W}_{\alpha \nu} \hat{W}^{\mu \beta}\right] \times B_{\mu \beta} B^{\alpha \nu}
$$

$$
\mathcal{L}_{T, 7}=\operatorname{Tr}\left[\hat{W}_{\alpha \mu} \hat{W}^{\mu \beta}\right] \times B_{\beta \nu} B^{\nu \alpha}
$$

$$
\mathcal{L}_{T, 8}=B_{\mu \nu} B^{\mu \nu} B_{\alpha \beta} B^{\alpha \beta}
$$

$$
\mathcal{L}_{T, 9}=B_{\alpha \mu} B^{\mu \beta} B_{\beta \nu} B^{\nu \alpha}
$$

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZAA	ZZAA	ZAAA
$\mathcal{L}_{S, 0}, \mathcal{L}_{S, 1}$	X	X	X	O	O	O	O	O
$\mathcal{L}_{M, 0} \mathcal{L}_{M, 1}, \mathcal{L}_{M, 6}, \mathcal{L}_{M, 7}$	X	X	X	X	X	X	X	O
$\mathcal{L}_{M, 2}, \mathcal{L}_{M, 3,}, \mathcal{L}_{M, 4}, \mathcal{L}_{M, 5}$	O	X	X	X	X	X	X	O
$\mathcal{L}_{T, 0,}, \mathcal{L}_{T, 1}, \mathcal{L}_{T, 2}$	X	X	X	X	X	X	X	X
$\mathcal{L}_{T, 5} \mathcal{L}_{T, 6} \mathcal{L}_{T, 7}$	O	X	X	X	X	X	X	X

There are few results easily available:

- New

$$
\frac{f_{T 8}}{\Lambda^{4}} \frac{s_{w}^{4}}{60 \pi} \frac{s^{4}}{M_{Z}^{4}} \leq \frac{1}{2} \quad \text { for } \sqrt{s}=2 \mathrm{TeV} \Longrightarrow\left|\frac{f_{T 8}}{\Lambda^{4}}\right| \leq 5 \times 10^{-4} \mathrm{TeV}^{-4}
$$

a form factor is needed to enforce unitarity

- "In the literature" for LEP couplings [hep-ph/0009262]

$$
a_{0} \text { and } a_{c} \simeq F_{M 0}, F_{M 1}, F_{M 2}, F_{M 3}
$$

$$
\begin{align*}
& \left(\frac{\alpha \beta s}{16}\right)^{2}\left(1-\frac{4 M_{W}^{2}}{s}\right)^{1 / 2}\left(3-\frac{s}{M_{W}^{2}}+\frac{s^{2}}{4 M_{W}^{4}}\right) \leq N \text { for } V=W \tag{17}\\
& \left(\frac{\alpha \beta s}{16 c_{W}^{2}}\right)^{2}\left(1-\frac{4 M_{Z}^{2}}{s}\right)^{1 / 2}\left(3-\frac{s}{M_{Z}^{2}}+\frac{s^{2}}{4 M_{Z}^{4}}\right) \leq N \text { for } V=Z \tag{18}
\end{align*}
$$

where $\beta=\beta_{0}$ or β_{c} and $N=1 / 4(4)$ for $\beta_{0}\left(\beta_{c}\right)$. For instance, unitarity is violated for $\gamma \gamma$ invariant masses above 240 GeV for $\beta_{0}=5.6 \times 10^{-3} \mathrm{GeV}^{-2}$ (one of the present LEP bounds).

- Theory home work:
- obtain the unitarity bounds for dim8 operators
- get the EWPT limits on dim8 operators

