
A & T Seminar: Machine Protection Workshop Summary June 13th, 2013 CERN, Geneva, Switzerland

MP workshop: Summary of S4: Collimators and Movable Devices and S6: Operation after LS1

Stefano Redaelli and Jörg Wenninger, CERN-BE

Many thanks to the scientific secretaries, V. Chetvertkova (S4) and M. Albert (S6), and to the chairmen of the other sessions.

List of talks and speakers

Presentation title	Speaker						
Session 4: LHC Collimators and Movable Devices							
Movable Devices	S. Redaelli						
Settings Generation, Management and Verification	G. Valentino						
Beam-based validation of settings	B. Salvachua						
Collimator Hierarchy Limits	R. Bruce						
Updated Robustness Limits for Collimator Materials	A. Bertarelli						
Session 6: LHC Operation after LS1							
Post LS1 operation	G. Arduini						
Update on beam failure scenarios	J. Uythoven						
Post LS1 operational envelope and MPS implications	M Solfaroli						
Software tools for MPS	K. Fuchsberger						
Interlocking strategy versus Availability	L. Ponce						

S4: Collimator and movable devices

- LHC Moveable Devices(S. Redaelli)
- Settings generation, management and verification (G. Valentino)
- Beam-based validation of settings (B. Salvachua)
- Updated robustness limits for collimator materials (A. Bertarelli)
- Collimator hierarchy limits: assumptions and impact on machine protection and performance (R. Bruce)

Many thanks to speakers and V. Chetvertkova!

Synergy with various talks on dump and injection topics

LHC movable devices

About **500 movable devices** are installed in the LHC that could touch the beams!

This includes: collimators, beam instrumentation, vacuum valves, safety systems, experiment detectors...

Classify in two categories: operational (settings) and non-OP (in/out) devices.

Clearly, each requires a proper interlock strategy for the operation with unsafe intensity!

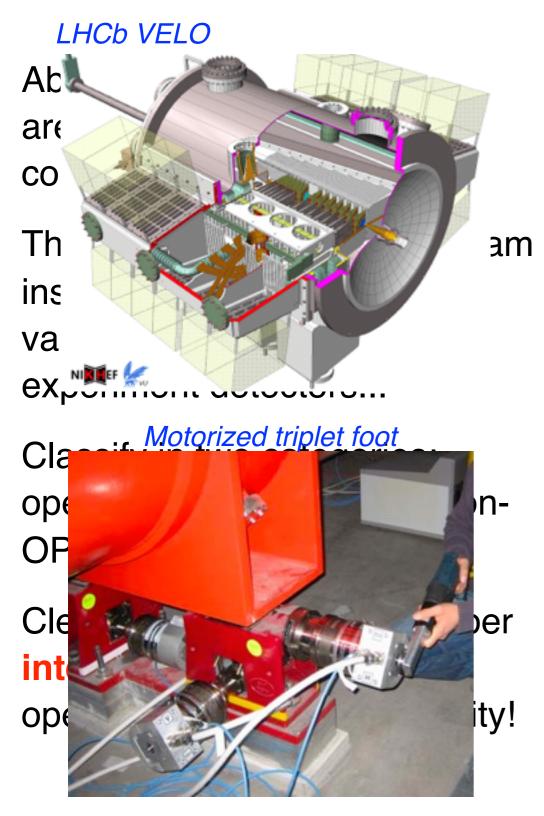
Name	Description	Nº.	Position	Туре	Comment	
TED	Stopper	4	TI8/TI2	IN/OUT	Needs extraction interlock while moving	
TBSE	Safety Stopper	1	TI8	IN/OUT	Needs extraction interlock while moving	
BTV	Screens	18	TI8/TI2	IN/OUT	Limitation on extraction intensity with Al screen. Needs extraction interlock while moving	
VV	TL Vacuum Valves	14	TI8/TI2	IN/OUT		
TCDI	TL Collimators	14	TI8/TI2	Mobile		
VV	Ring Vacuum Valves	249		IN/OUT	Veto activation with circulating beam	
VVX	Fast Valves	2	IR8	IN/OUT	Very fast acting	
VVX	Passive Valves	2	IR2	IN/OUT	Mechanical action only. Remote Status available	
BTV	Injection & Matching Screens	13	IR2/IR8/ IR3/IR4	IN/OUT	Veto movement with circulating beam Limit on the number of turns vs. injected intensit	
BWS	Wire Scanners	4	IR4	IN/OUT	Limits on intensity vs. energy	
	RF Electron Stoppers	4	IR4	IN/OUT	Linked to LHC Access Safety System	
	Safety Stoppers	2	IR6	IN/OUT	Linked to LHC Access Safety System	
BEUV	Alignment Mirrors	2	IR4	IN/OUT		
VV	Dump line Vacuum Valves	4	IR6	IN/OUT	Dump Circulating beam on activation	
BTV	Dump Line Screens	6	IR6	IN/OUT	Veto movement with intensity above a threshold Veto acceleration with screens in above threshold	
TCP	Primary Collimators	8	IR3/IR7	Mobile		
TCSG	Secondary Collimators	30	IR3/IR7	Mobile		
TCT	Tertiary Collimators	16	IR1/IR5/IR2	Mobile		
TCLP	Absorbers	8	IR1/IR5	Mobile	Absorbers for Physics regions	
TCLA	Absorbers	16	IR3/IR7	Mobile	Cleaning region absorbers	
TCSP	Scrapers	6	IR3/IR7	Mobile	For special use.	
TCDQ	Protection Elements	2	IR6	Mobile	Protect cold aperture from bad dump.	
TCS	Protection Elements	2	IR6	Mobile	As above	
TDI	Injection Protection	2	IR2/IR8	Mobile		
TCLI	Injection Protection	4	IR2/IR8	Mobile		
XRP	Totem Roman Pots	24	IR5	Mobile	Set at 10s in during stable data taking	
XRP	Atlas Roman Pots	8	IR1	Mobile		
VELO	LHCb Vertex Locator	1	IR8	Mobile	At around 5mm from beam axis during data taking	
ZDC	Alice Detectors	2	IR2	Mobile	Outside the beam vacuum.	
BBLR	Beam-Beam Compensator	8	IR1/IR5	Mobile	Not baseline	

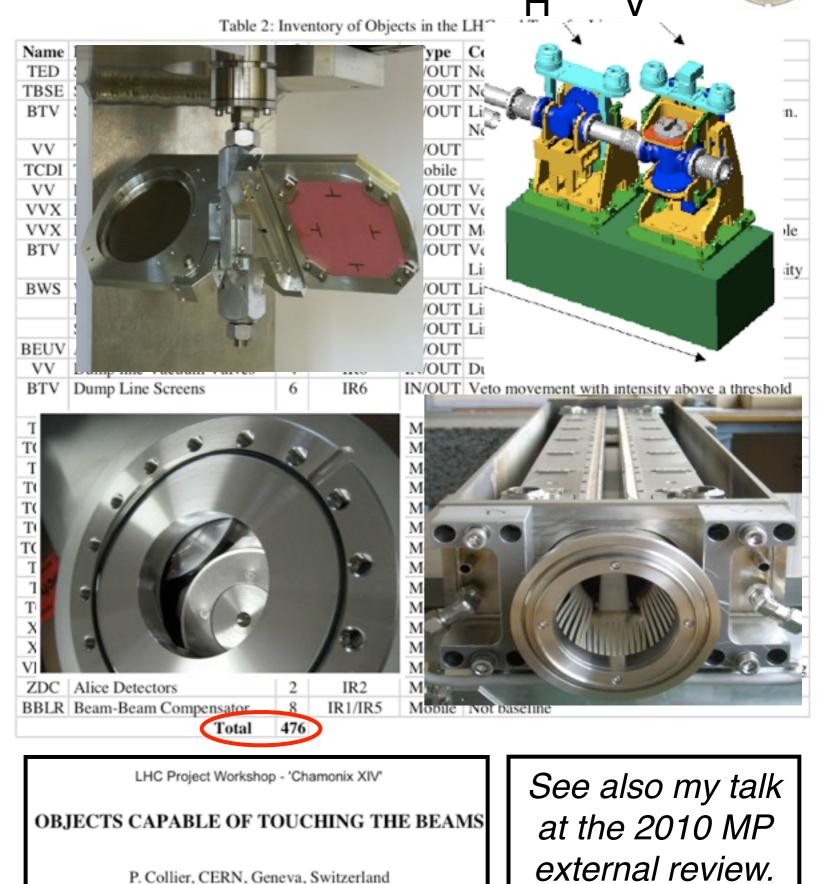
Table 2: Inventory of Objects in the LHC and Transfer Lines

LHC Project Workshop - 'Chamonix XIV'

OBJECTS CAPABLE OF TOUCHING THE BEAMS

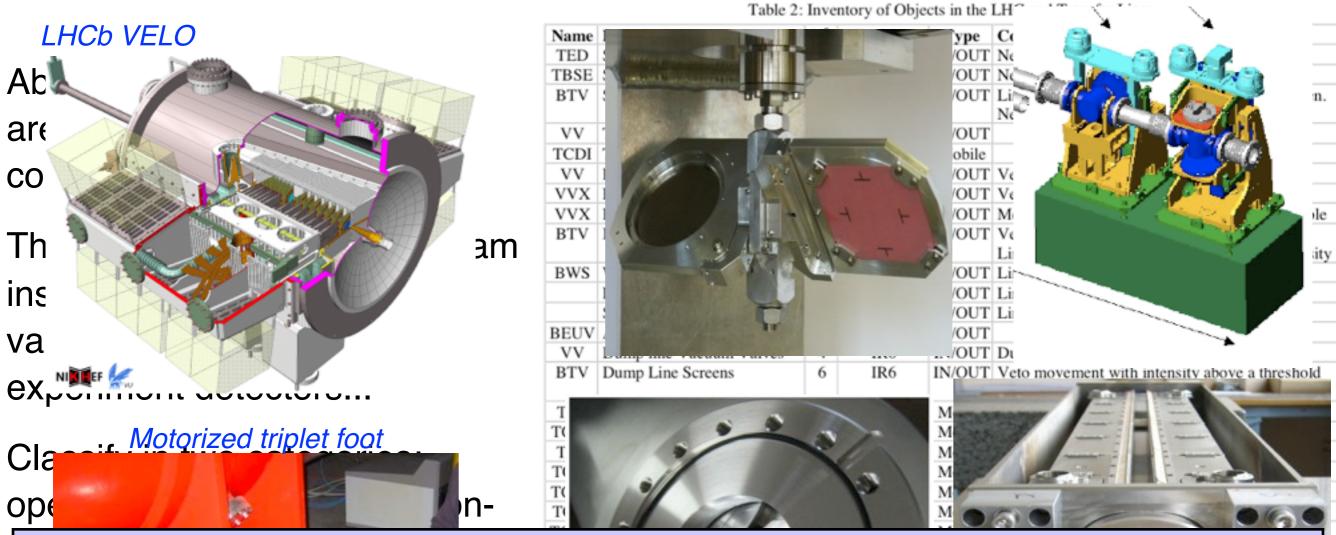
P. Collier, CERN, Geneva, Switzerland


See also my talk at the 2010 MP external review.


S. Redaelli

S. Redaelli, A&T seminar 13/06/2013

LHC movable devices



S. Redaelli

S. Redaelli, A&T seminar 13/06/2013

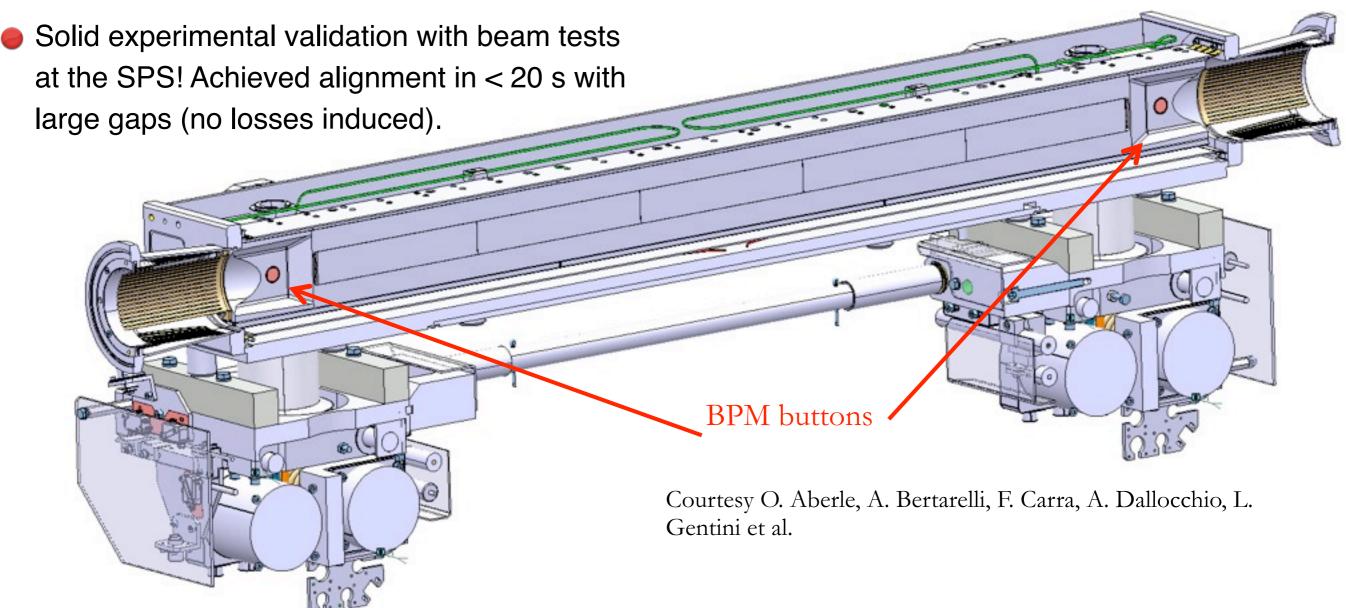
LHC movable devices

- One outstanding issue: fast vacuum valves in IR4
 - MPP followup: decided not to have them in the LHC (M. Zerlauth, LMC 22/05/2013)
- Interlocking of other movable devices considered adequate.
- Watch out for LHCb-VELO aperture upgrade in LS2! So far, outside of OP control.
- Identified some weaknesses of the controls/procedures for critical settings handling.
- Important change for collimators: **18 new collimators with integrated BPMs**!

S. Redaelli

P. Collier, CERN, Geneva, Switzerland

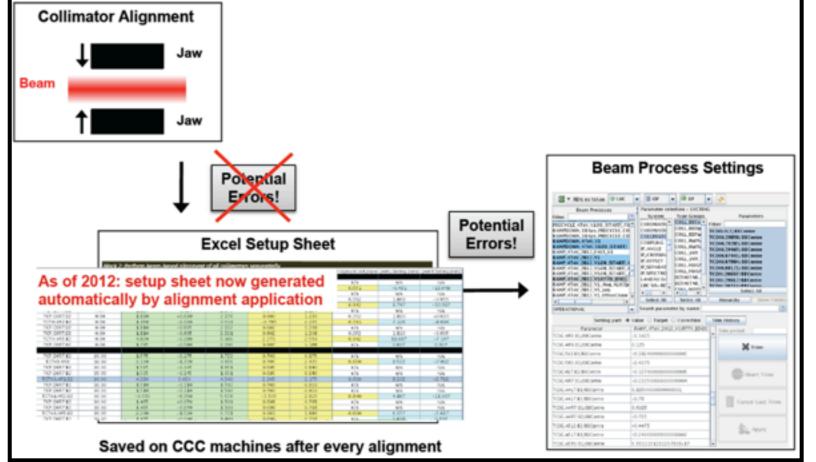
external review.

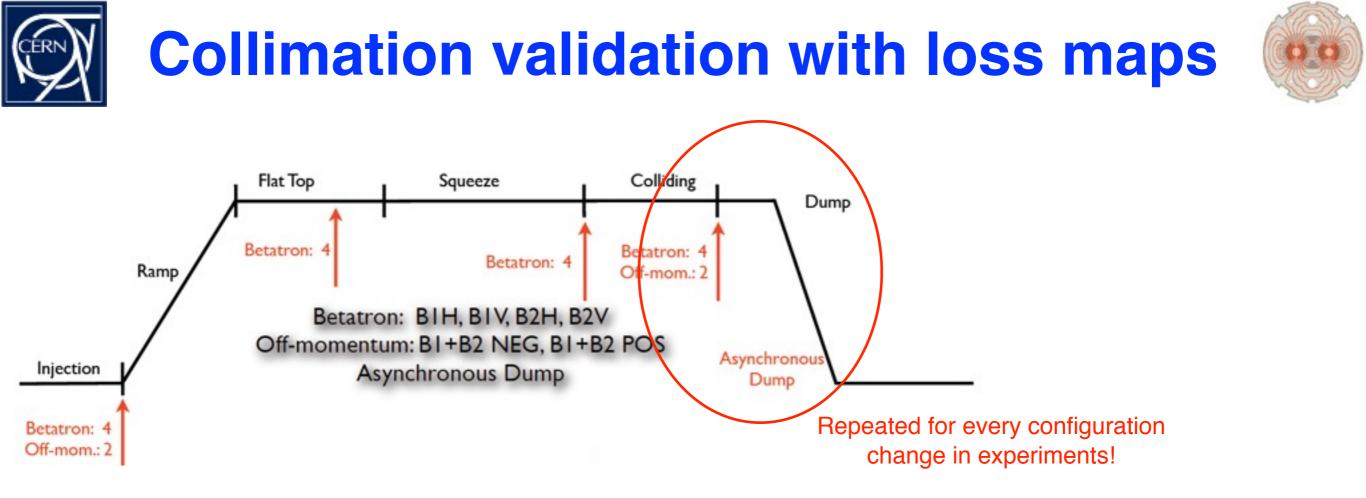

BPM embedded collimators

16 Tungsten TCTs in all IRs and the 2 Carbon TCSGs in IR6 will be replaced by new collimators with integrated BPMs.

Gain: can align the collimator jaw without "touching" the beam \rightarrow no dedicated low-intensity fills.

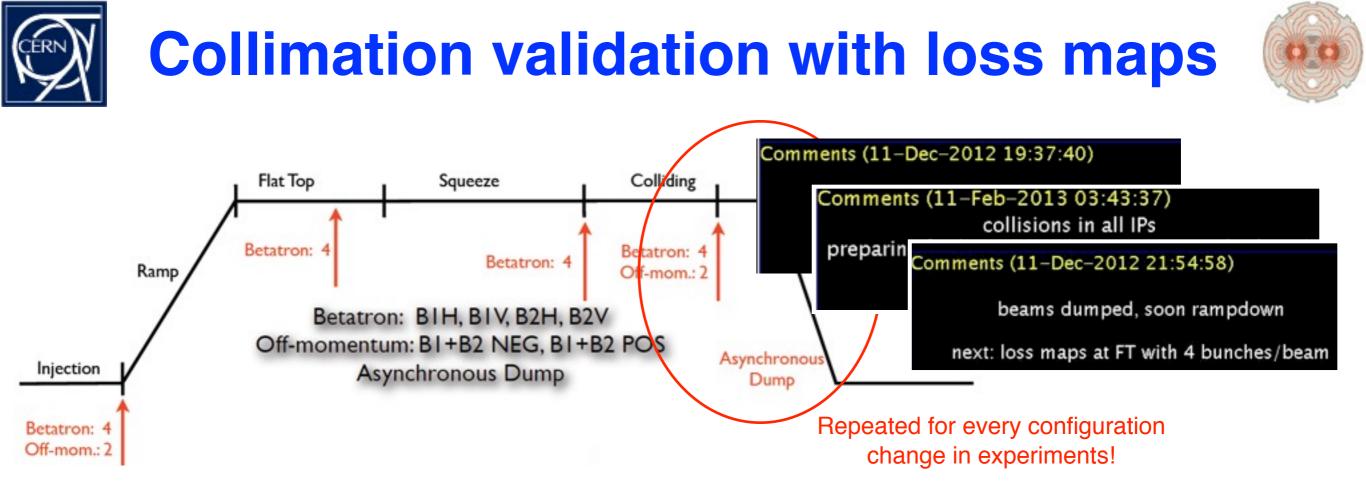
- → Drastically reduced setup time => more flexibility in IR configurations
- → Reduced orbit margins in cleaning hierarchy => more room to squeeze β^* : $\geq \sim 30$ cm (R. Bruce)
- → Improved monitoring of local orbit and interlocking strategy


Collimator settings


- 1. Very few cases with **settings problems**... but potential impact critical!
 - CHECK, CHECK, CHECK!!!
- 2. New **software** for setting checks seems **adequate** to address problems encountered.
 - Will be developed further to reduce manual interventions, add redundant checks
- 3. Great potential from BPM collimator design, but only useful for TCTs + IR6.
- 4. Proposal of a new redundant limit for TCT's under discussion (limits versus IP sep)
- 5. Online model and aperture meter should be pursued further (OP+ABP)!
- Very active discussion about operational displays.

Adequate for expert usage but could be improved for shift crew operation.

- Action on OP side to come up with a proposal of display improvements



G. Valentino

- 1. About 20 new configurations setup in 2012-13 that required validation!
- 2. Great improvement for betatron loss maps (LM's), thanks to the ADT excitation.
 - Very efficient commissioning / collimator alignment / verification in single fills
 - Excitation of individual 25 ns bunches \rightarrow can we do loss maps with full intensity?
- 3. No obvious way to speed up off-momentum LM's and asynch dumps validation!
 - Some proposals were presented for the off-momentum LM's
- 4. Can online monitoring to speed up validation without dedicated LM's? No...
 - Were we really limited by loss maps?
- 5. Clearly, we will need loss maps again after LS1!

B. Salvachua

- 1. About 20 new configurations setup in 2012-13 that required validation!
- 2. Great improvement for betatron loss maps (LM's), thanks to the ADT excitation.
 - Very efficient commissioning / collimator alignment / verification in single fills
 - Excitation of individual 25 ns bunches \rightarrow can we do loss maps with full intensity?
- 3. No obvious way to speed up off-momentum LM's and asynch dumps validation!
 - Some proposals were presented for the off-momentum LM's
- 4. Can online monitoring to speed up validation without dedicated LM's? No...
 - Were we really limited by loss maps?
- 5. Clearly, we will need loss maps again after LS1!

B. Salvachua

Collimator material tests at HRM (1)

 Beam energy: 440 GeV Impact depth: 2mm Jaws half-gap: 14 mm A. Bertarelli, <i>et al</i> 			Sketch of TCT collimator		
	Test 1	Test 3			
Goal	Beam impact equivalent to 1 LHC bunch @ 7TeV	Identify onset of plastic damage	Induce severe damage on the collimator jaw		
Impact location	Left jaw, up (+10 mm)	Left jaw, down (-8.3 mm)	Right jaw, down (-8.3 mm)		
Pulse intensity [p]	3.36 x 10 ¹²	$1.04 \ge 10^{12}$	9.34 x 10 ¹²		
Number of bunches	24	6	72		
Bunch spacing [ns]	50	50	50		
Beam size [σ _x - σ _y mm]	1153×1136		0.53 x 0.36		

Address by beam tests the robustness of the TCT (critical for β^* reach). Complementary dedicated material tests to find "ideal" collimator materials.

Collimator material tests at HRM (1)

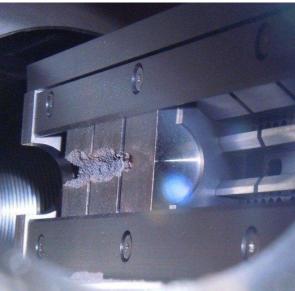
Sketch of TCT

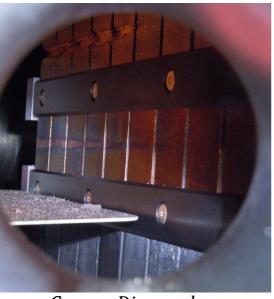
collimator

- Beam energy: **Groove height** 440 GeV ~ 1 cm Impact depth: **2mm** Jaws half-gap: Test 3 **14 mm** A. Bertarelli, et al **Ejected W fragments** ify o Goal da Test 1 **Impact location** w, d (1 LHC bunch @ 7TeV) Pulse intensity [r 1.0 Test 2 Number of bunch (Onset of Damage Bunch spacing [n **Beam size** 0.5 U.53 X U.36 $[\sigma_x - \sigma_v mm]$
- Address by beam tests the robustness of the TCT (critical for β* reach). Complementary dedicated material tests to find "ideal" collimator materials. S. Redaelli, A&T seminar 13/06/2013

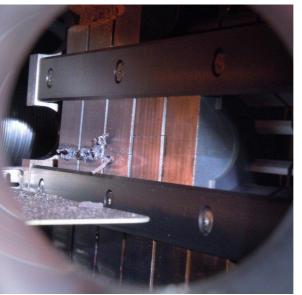
Test 3

(72 SPS bunches)

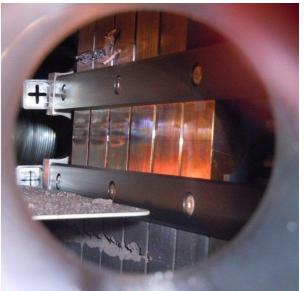

Collimator material tests at HRM (2)


Challenge for the collimator commissioning at 7 TeV that required a few nominal bunches for collision and orbit setup! Need follow up!

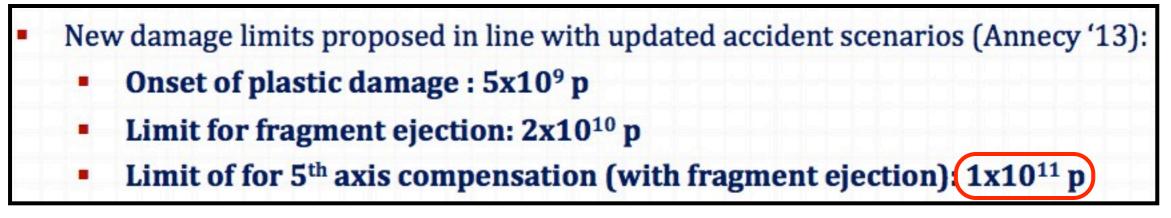
Studied alternative materials for future collimator jaws!


A. Bertarelli, et al

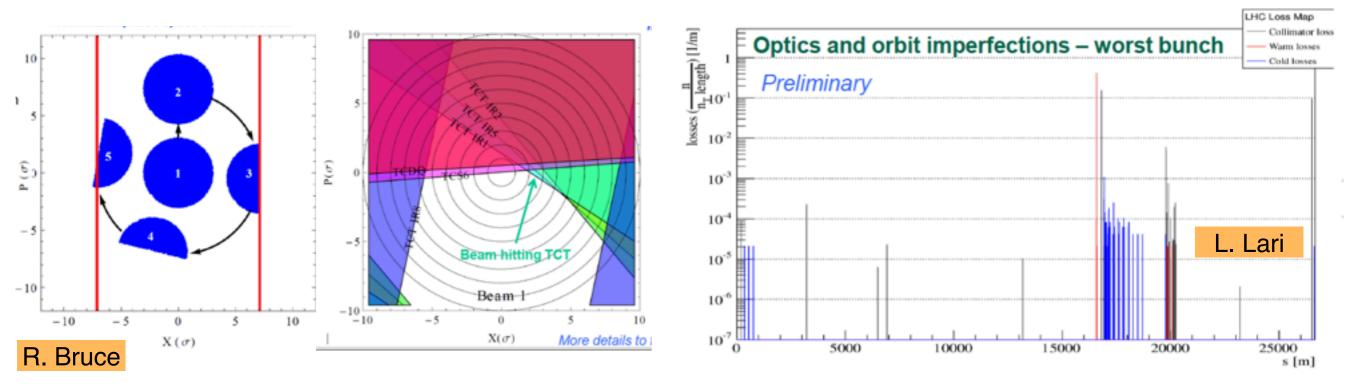
Inermet 180, 72 bunches


Copper-Diamond 144 bunches

Molybdenum, 72 & 144 bunches


Molybdenum-Copper-Diamond 144 bunches

Glidcop, 72 bunches (2 x)


Molybdenum-Graphite (3 grades) 144 bunches

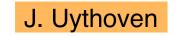
Assumptions for failure modes

- 1. Reviewed collimator hierarchy limits and impact on β^* : can achieve **30cm** < β^* < **60cm**!
- 2. Can we revise the failure assumptions to achieve more realistic failure models?
 - Done already for 2012 operation (sum of orbit errors: linear vs sum in quadrature)
- 3. What can be improved?
 - Repeat study for post-LS1 cases at 25ns. Optimize phase advances?
- 4. Actions from collimation project side: consider **building collimators** based on new materials to replace more exposed TCTs and TCSG's contributing more to impedance
- 5. Started a **collimator material working group** to establish an executive summary of HRM tests and rank the tested materials. *Chaired by A. Dallocchio. Kick-off meeting in May. S. Redaelli, A&T seminar 13/06/2013*

S6: LHC operation after LS1 (J. Wenninger, M. Albert)

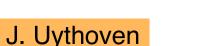
- Post LS1 operation (G. Arduini)
- ✓ Update on beam failure scenarios (J. Uythoven)
- Post LS1 operational envelope and MPS implications (M Solfaroli)
- Software tools for MPS (K. Fuchsberger)
- Interlocking strategy versus Availability (L. Ponce)

Operation 2015


- After the period of commissioning at low intensity, a running period at 50 ns after short scrubbing run is desirable to re-discover the machine at 6.5 TeV.
 - $\beta^* \sim 50$ cm, nominal bunch intensity, low emittance, pile-up of up to 40.
- □ We will then switch to 25 ns after additional period of scrubbing (~14 days) and ramp-up the beam intensity (number of bunches).
- □ There are many options for optics, beta* and cycle configurations.
 - Combined ramp and squeeze,
 - Lower beta* at injection,
 - β^* in some IRs (+ collision during [part of] the squeeze).
- □ The baseline scenario should be defined by the end of the year.
 - Study implications for OP and MP (collimation etc).

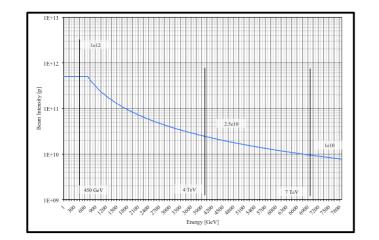
Expect that this will be followed up with high priority by the LBOC meeting!

- The low emittance BCMS scheme beams are very attractive but:
 - Injection: energy density for 50 ns and 25 ns beams is ~35% and 70% higher than for the ultimate beam.
 - <u>7 TeV</u>: energy density for 50 ns and 25 ns beams is ~2% and 25% higher than for the ultimate beam.
 - □ In particular at injection we must check all protection devices.
- We need a 'body' to follow up heating issues not necessarily MPP.
 - □ We should identify issues at an early stage to put in place counter-measures before damaging equipment.



Beam failure scenarios

- The <u>Big Three</u> failure scenarios (D1, injection, asynchronous dump) all occurred with some modifications.
 - □ However, weaknesses were detected with equipment related to 2 oo 3 of the Big Three failure modes:
 - TDI position.
 - LBDS: Trigger and Synchronization Unit and powering.
- Unexpected failure scenarios occurred (as expected):
 - ☐ Timing system, beam heating, UFOs, abort gap, QPS.
 - □ We need to further improve our protection against these faults.
 - Heavily relying on the Software Interlock System (SIS).
- After LS1 we must continue to understand each beam dump (post mortem) before continuing operation.



Setup beam definition

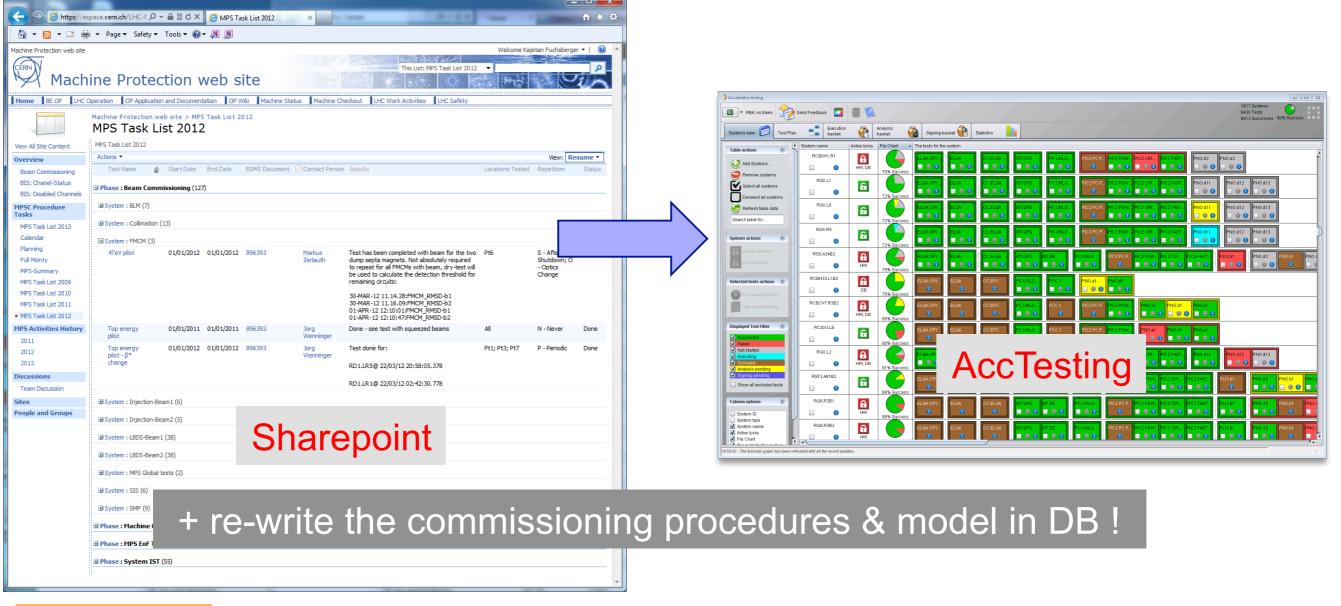
M. Solfaroli

The setup beam limit defines the max. intensity for which BIS interlocks may be masked.

Simple scaling of the curves from 4 TeV would not allow masking with 3 nominal bunches.

PLUS THE PLEACTOR	4	Γεν	(mainta	ΓeV ining the ves)	7 TeV (maintaining the concept)	
FEFA	Allowed intensity	Factor (wrt normal)	Allowed intensity	Factor (wrt normal)	Allowed intensity	Factor (wrt normal)
NORMAL	2.5x10 ¹⁰		1x10 ¹⁰		1x10 ¹⁰	
RELAXED	1.2x10 ¹¹	5	4.8x10 ¹⁰	5	1.2x10 ¹¹	13
VERY RELAXED	3.26x10 ¹¹	13	1.26x10 ¹¹	13	3.26x10 ¹¹	34

We must review the concept and limits for relaxed and very relaxed safe beam flag ↔ commissioning and MD needs and risks !

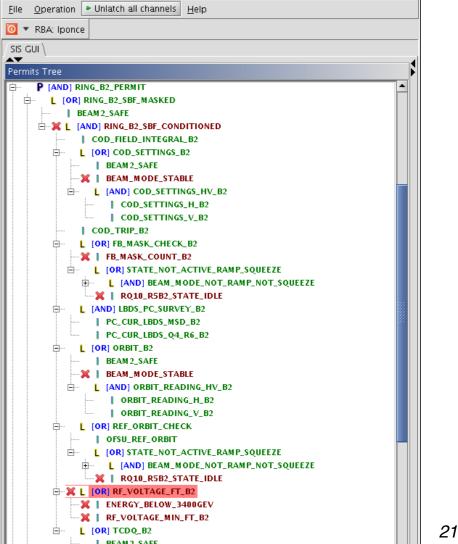

Software tool for MPS - main change

The tracking of MPS tests will move from a share-point site to DB and JAVA tracking tool.

from here....

to there !

K. Fuchsberger



Software interlock system (1)

_ O X

- The Software Interlock System (SIS) is used heavily in the LHC. It subscribes to ~2700 devices.
 - □ Used to interlock injection and dump the beams.
 - □ The core is very reliable, but sensitive to communication errors.
 - SIS provided quick solutions to many problems related to MP that were discovered during operation.
 LHC SIS GUI
- For LS1 we propose to improve:
 - □ User interface,
 - □ Post-mortem information,
 - Masking.

L. Ponce

- To increase the safety level and reduce issues with communication, some SIS interlocks should be moved to hardware interlocks (after LS1 or bit later):
 - □ Beam position interlocks at TCSG in IR6.
 - □ TDI gap interlock. Already available in collimation software. Further redundancy?
- From the workshop discussions, one has to expect new interlocks to arrive after LS1.

The SIS proved to be working very well and offers a flexibility for "quick" changes → clearly expect to rely on that in the future!

Conclusions

- The summaries of sessions 4 (collimators and movable devices) and 6 (operation after LS1) of the machine protection workshop were presented.
- Focus on many follow up items that came up. Several actions have already taken place!
- It was not possible to give justice to all speakers in the given limited time...

Excellent technical results were presented that could not be reported here.

Thanks a lot to the speakers!

Many thanks also to the scientific secretaries and to the people who contributed to the active discussions that animated these sessions.