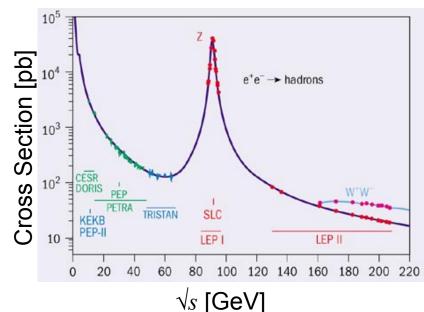

Future collider prospects of the ElectroWeak fit of the SM

This presentation:

- Brief introduction to key (future) observables
- ✓ Prospects for LHC-300, ILC/GigaZ, TLEP

✓ Outlook

(Results presented here based on Gfitter software.)


The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow f\bar{f}$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}
 ight)fZ_{\mu}$ where z
- Prediction EWSB at tree-level:

$$\frac{M_W^2}{M_Z^2 c_W^2} = 1$$

- The impact of loop corrections
 - Absorbed into EW form factors: ρ, κ, Δr
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$

$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$

$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$

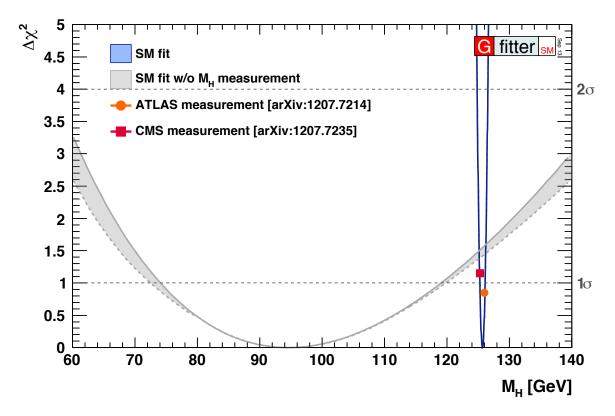
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

Unique situation:

- For first time SM is fully over-constrained.
- And for first time electroweak observables can be unambiguously predicted at loop level.
- Powerful predictions of key observables now possible, much better than w/o M_H

Paradigm shift for EW fit.

From (Higgs) mass predictions to precision tests for:


- Self-consistency of the Standard Model
- Possible contributions from BSM models
- Improved accuracies set benchmark for new direct measurements!

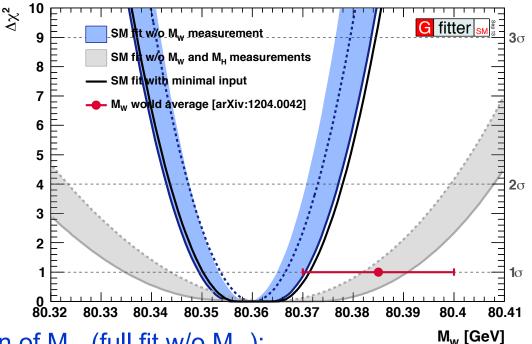
Electroweak Fit – Experimental inputs

	$M_H \; [{ m GeV}]^\circ$	125.7 ± 0.4	LHC
Latest experimental inputs:	M_W [GeV]	80.385 ± 0.015	
 Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)] 	Γ_W [GeV]	2.085 ± 0.042	Tevatron
• M_{W} and Γ_{W} from LEP/Tevatron	M_Z [GeV]	91.1875 ± 0.0021	
[arXiv:1204.0042, arXiv:1302.3415]	Γ_Z [GeV]	2.4952 ± 0.0023	
 m_{top} latest avg from Tevatron 	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
[arXiv:1305.3929]	R^0_ℓ .	20.767 ± 0.025	
 m_c, m_b world averages (PDG) 	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
[PDG, J. Phys. G33,1 (2006)]	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLC
• $\Delta \alpha_{had}^{(5)}(M_Z^2)$ including α_S dependency	$\sin^2\!\theta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	
[Davier et al., EPJC 71, 1515 (2011)]	A_c	0.670 ± 0.027	
• M _H from LHC	A_b	0.923 ± 0.020	SLC
[arXiv:1207.7214, arXiv:1207.7235]	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	·
$-7(\pm 2)$ from fit parameters:	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
7 (+2) free fit parameters:	R_c^0	0.1721 ± 0.0030	
• M_{H} , M_{Z} , $\alpha_{S}(M_{Z}^{2})$, $\Delta \alpha_{had}^{(5)}(M_{Z}^{2})$,	R_b^0	0.21629 ± 0.00066	
m _t , m _c , m _b	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
 2 theory nuisance parameters 	$\overline{m}_b \; [\text{GeV}]$	$4.20^{+0.17}_{-0.07}$	_
 δM_W (4 MeV), δsin²θ ^I_{eff} (4.7x10⁻⁵) 	$m_t \; [{ m GeV}]$	173.20 ± 0.87	Tevatron
	$\Delta \alpha_{ m had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2756 ± 10	

• Overall consistency of the Standard Model fit is very good.

- M_H consistent at 1.3 σ with indirect prediction from EW fit.
 - Higgs mass prediction: 94⁺²⁵₋₂₂ GeV. (Measurement: 126 GeV.)
- p-Value of global electroweak fit of SM: 18⁺² % (pseudo-experiments)

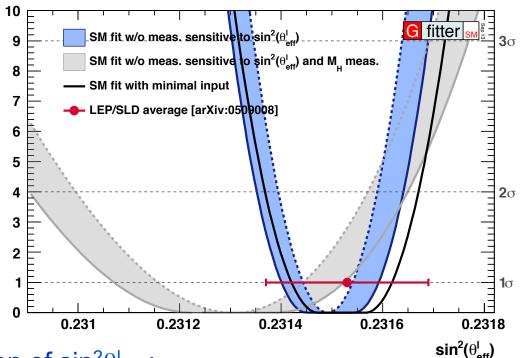
Indirect determination of W mass


CERN

- Scan of $\Delta \chi^2$ profile versus M_W
 - Also shown: SM fit with minimal inputs: M_Z , G_F , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, M_H , and fermion masses
 - Good consistency between total fit and SM w/ minimal inputs
- M_H measurement allows for precise constraint on M_W
 - Agreement at 1.4σ
- Fit result for indirect determination of M_W (full fit w/o M_W):

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}}$$

 $= 80.359 \pm 0.011_{\rm tot} \; ,$


- More precise estimate of M_W than the direct measurements!
 - Uncertainty on world average measurement: 15 MeV

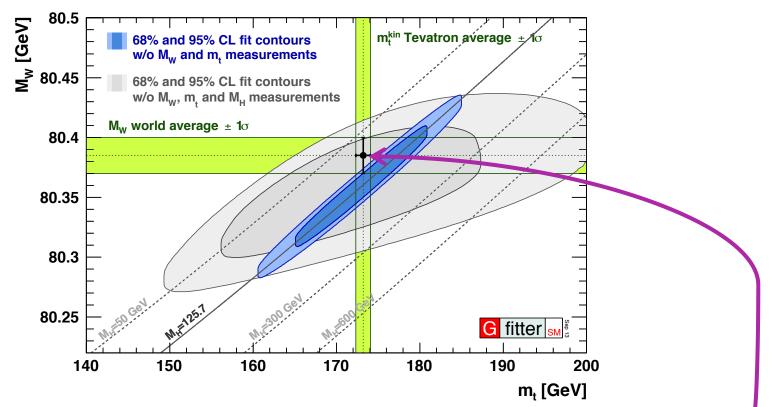
Indirect effective weak mixing angle

- Right: scan of Δχ² profile versus sin²θ^l_{eff}
 - All sensitive measurements removed from the SM fit.
 - Also shown: SM fit with minimal inputs
- M_H measurement allows for very precise constraint on sin²θ^I_{eff}

Fit result for indirect determination of sin²θ^I_{eff}:

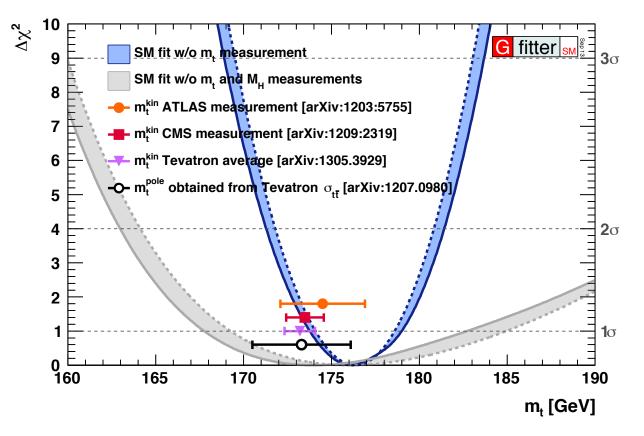
 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}},$

 $\Delta \chi^2$


 $= 0.23150 \pm 0.00010_{\rm tot} \; ,$

- More precise than direct determination (from LEP/SLD) !
 - Uncertainty on LEP/SLD average: 1.6x10⁻⁴

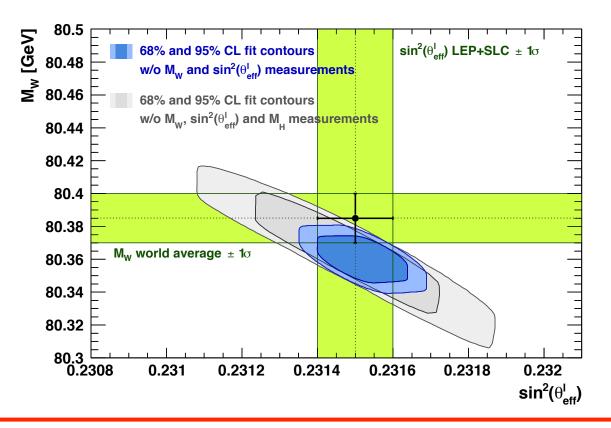
State of the SM: W versus top mass


- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

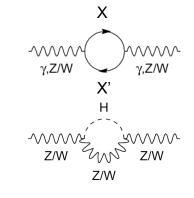
Indirect determination of top mass

• Shown: scan of $\Delta \chi^2$ profile versus m_t (without m_t measurement)


- M_H measurement allows for significant better constraint of m_t
- Indirect determination consistent with direct measurements
 - Remember: fully obtained from loop corrections!
- Indirect result: m_t = 176.1^{+2.9}_{-2.4} GeV

Tevatron: 173.2 ± 0.9 GeV LHC: 173.3 ± 1.0 GeV

State of the SM: W mass versus $sin^2\theta^{I}_{eff}$


- Scan of M_W vs sin² θ^{I}_{eff} , with direct measurements excluded from the fit.
- Again, significant reduction allowed indirect parameter space from Higgs mass measurement.

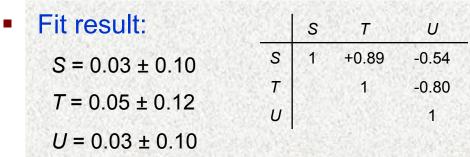
- M_W and sin²θ^I_{eff} have become *the* sensitive probes of new physics!
 - Both are 'tree-level' SM predictions.

Constraints on Oblique Corrections

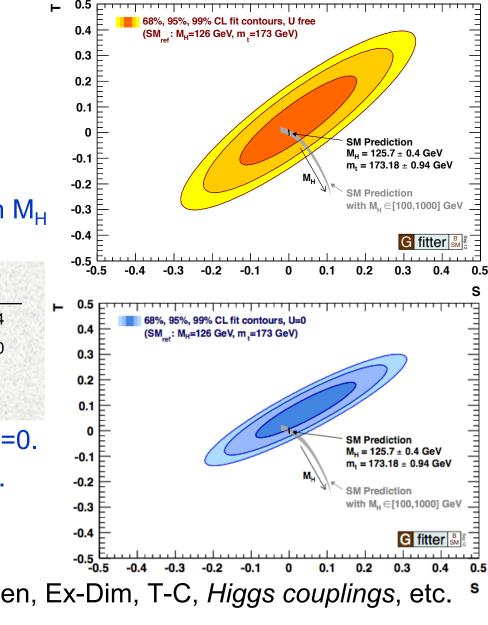
- If energy scale of NP is high, BSM physics appears dominantly through vacuum polarization corrections
- Aka, "oblique corrections"
- Oblique corrections reabsorbed into electroweak form factors
 - $\Delta \rho$, $\Delta \kappa$, Δr parameters, appearing in: M_W², sin² θ_{eff} , G_F, α , etc.
- Electroweak fit sensitive to BSM physics through oblique corrections
 - Similar to sensitivity to top and Higgs loop corrections.

 Oblique corrections from New Physics described through STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

 $O_{meas} = O_{SM,REF}(m_H,m_t) + c_S S + c_T T + c_U U$


- S: New Physics contributions to neutral currents
- T: Difference between neutral and charged current processes – sensitive to weak isospin violation
- U: (+S) New Physics contributions to charged currents. U only sensitive to W mass and width, usually very small in NP models (often: U=0)
- Also implemented: extended parameters (VWX), correction to Z→bb couplings.

[Burgess et al., Phys. Lett. B326, 276 (1994)] [Burgess et al., Phys. Rev. D49, 6115 (1994)]



Fit results for S, T, U

- S,T,U obtained from fit to the EW observables
- SM: M_H = 126 GeV, m_t = 173 GeV
 - This defines (S,T,U) = (0,0,0)
- SM: S, T depend logarithmically on M_{H}

- Stronger constraints from fit with U=0.
- Also available for $Z \rightarrow bb$ correction.
- No indication for new physics.
- Can now use this to constrain 4th gen, Ex-Dim, T-C, *Higgs couplings*, etc.

Future prospects for the SM fit

Max Baak (CERN)

The ElectroWeak fit of Standard Model and Beyond

Prospects scenarios: LHC, ILC/GigaZ, TLEP

Prospects of EW fit tested for three scenarios:

- 1. LHC Run-2+3
- 2. ILC with GigaZ (*)
- 3. Future scenario (= TLEP-like)

(*) GigaZ:

- Operation of ILC at lower energies like Z-pole or WW threshold.
 - Allows to perform precision measurements of EW sector of the SM.
- At Z-pole, several billion Z's can be studied within 1-2 months (days).
- Physics of LEP1 and SLC can be revisited with few days of data.

In following studies:

Central values of input measurements adjusted to M_H = 126 GeV.

• (Except where indicated.)

All three scenarios:

- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR), KLOE-II, VEPP-2000 (at energy below cc resonance), and BESIII e⁺e⁻ cross-section measurements, in particular around cc resonance.
 - Plus: improved α_s , improvements in theory: $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming ~25% of today's theoretical uncertainties on M_W and $sin^2\theta_{eff}^I$
 - Implies three-loop EW calculations!
 - $\delta M_W (4 \rightarrow 1 \text{ MeV})$, $\delta sin^2 \theta_{eff}^{I} (4.7 \times 10^{-5} \rightarrow 1 \times 10^{-5})$
 - (Theoretical uncertainty estimates from recent Snowmass report)

fit setups:

full EW fit.

	Expe	erimental input $[\pm 1\sigma]$
Parameter	Present	
M_H [GeV]	0.4	Present scenario, two fit setup
M_W [MeV]	15	 Present fit: current full EW f
M_Z [MeV]	2.1	
$m_t [{ m GeV}]$	0.9	Present uncertainties:
$\Gamma_Z~[{ m MeV}]$	2.3	central values of input
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16	measurements adjusted to
$R_l^0 \left[\cdot 10^{-3} \right]$	25	M _H = 126 GeV, and
$\overline{\Delta\alpha^5_{\rm had}(M_Z^2)} \left[\cdot 10^{-5}\right]$	10	 EW fit with minimal inputs E.g. all asymmetry
$\alpha_{s}(M_{Z}^{2}) \ [\cdot 10^{-4}]$	—	measurements
$\delta_{\rm th} M_W ~[{ m MeV}]$	4	replaced by sin ² θ ^I _{eff}
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	

	Exp	erimen	tal input $[\pm 1\sigma]$
Parameter	Present	LHC	
M_H [GeV]	0.4 ⊨	< 0.1	LHC
M_W [MeV]	$15 \Rightarrow$	8	• F
M_Z [MeV]	2.1	2.1	= N
$m_t \; [\text{GeV}]$	0.9 🖨	0.6	U
Γ_Z [MeV]	2.3	2.3	• F
$\sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	16	16	b
$R_l^0 \left[\cdot 10^{-3} ight]$	25	25	
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [\cdot 10^{-5}]$	10 🖨	4.7	• F
$\alpha_{S}(M_{Z}^{2}) \ [\cdot 10^{-4}]$	—	_	L
$\delta_{\rm th} M_W$ [MeV]	4 ➡	• 1	
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	1	

LHC scenario:

- Run 2+3, i.e. 300/fb of data.
- Numbers inspired by recent LHC upgrade studies.
- Possibly optimistic scenario, but not impossible.
- Final W and top mass measurements, combination with LEP and Tevatron.

Experimental inputs – Predicted uncertainties

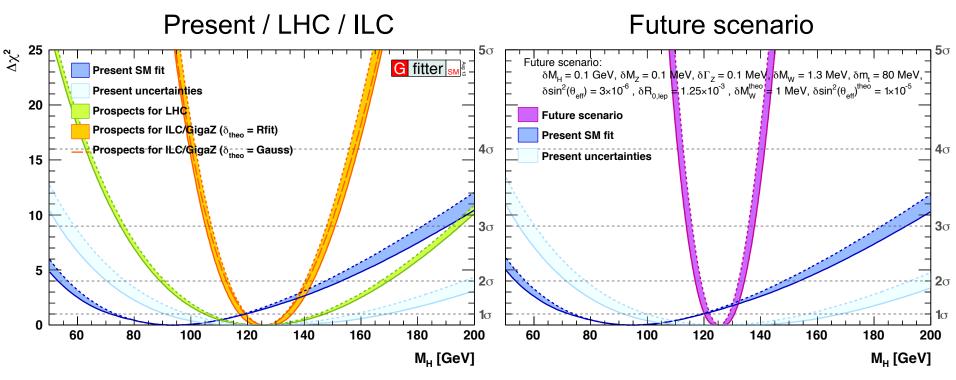
	Exp	erime	ntal input $[\pm 1\sigma$
Parameter	Present	LHC	ILC/GigaZ
M_H [GeV]	0.4 ⊨	< 0.1	< 0.1
M_W [MeV]	15 🖨	8	⇒ 5
M_Z [MeV]	2.1	2.1	2.1
$m_t \; [\text{GeV}]$	0.9 	0.6	0.1
$\Gamma_Z [{ m MeV}]$	2.3	2.3	➡ 0.8
$\sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	16	16	⇒ 1.3
$R_l^0 \ [\cdot 10^{-3}]$	25	25	\Rightarrow 4
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [\cdot 10^{-5}]$	10 	4.7	4.7
$\alpha_s(M_Z^2) \ [\cdot 10^{-4}]$	—	_	_
$\delta_{\rm th} M_W ~[{\rm MeV}]$	4 🖨	1	1
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	1	1

ILC scenario:

- Prospects from ILC TDR (Vol-2).
- M_W: WW threshold scan + kinematic reconstruction.
- m_t: ttbar production threshold scan.
- $\delta A^{0,f}_{LR}: 10^{-3} \rightarrow 10^{-4}$
- High statistics on Z pole
- Improvement in Higgs mass over LHC has negligible impact on fit results.
- Possible improvement in Γ_Z, but has small impact on fit.

Experimental inputs – Predicted uncertainties

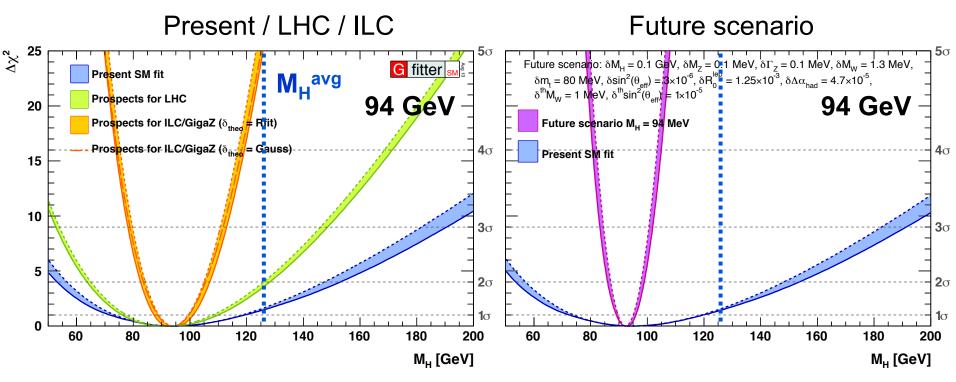
	Experimental input $[\pm 1\sigma]$							
Parameter	Present	LHC	IL	C/Gig	aZ	TLEP		
M_H [GeV]	0.4 🛋	< 0.1 ►		< 0.1		< 0.1		
M_W [MeV]	15 =	8	⇒	5	⇒	1.3		
M_Z [MeV]	2.1	2.1		2.1	⇒	0.1		
$m_t [{ m GeV}]$	0.9 =	• 0.6		0.1		0.08		
$\Gamma_Z [{ m MeV}]$	2.3	2.3	⇒	0.8	⇒	0.1		
$\sin^2 \theta_{\rm eff}^{\ell} \ [\cdot 10^{-5}]$	16	16	⇒	1.3	⇒	0.3		
$R_l^0 \ [\cdot 10^{-3}]$	25	25	⇒	4	⇒	1.3		
$\Delta \alpha_{\rm had}^5(M_Z^2) \ [\cdot 10^{-5}]$	10 🛋	4 .7		4.7		4.7		
$\alpha_s(M_Z^2) \ [\cdot 10^{-4}]$	—	_		—		_		
$\delta_{\rm th} M_W$ [MeV]	4 🛋	> 1		1		1		
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell} \left[\cdot 10^{-5} \right]$	4.7	> 1		1		1		


TLEP scenario:

- Preliminary estimates
- Clearly not the same level of understanding as LHC or ILC.
- Uncertainties may turn out completely different.
 - From arXiv:1308.6176,
 - and Snowmass report.
 - Of these two, we take most conservative estimate.
- Note: top mass dominated by theoretical uncertainty.
- Higher statistics

From beam energy precision: improved M_Z and Γ_Z

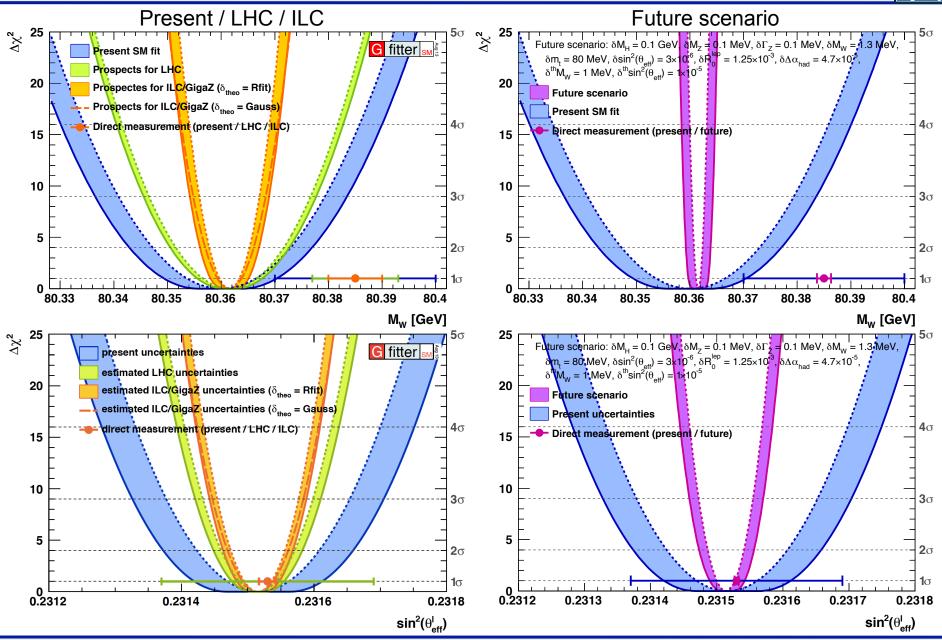
Prospects of the EW fit: Higgs mass (126 GeV)


- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - ILC with (without) theory errors:
 - ILC with present-day theory uncertainties:
 - TLEP with (without) theory errors:

 $M_{\rm H} = 126^{+10}_{-9} (\pm 7) \, {\rm GeV}$

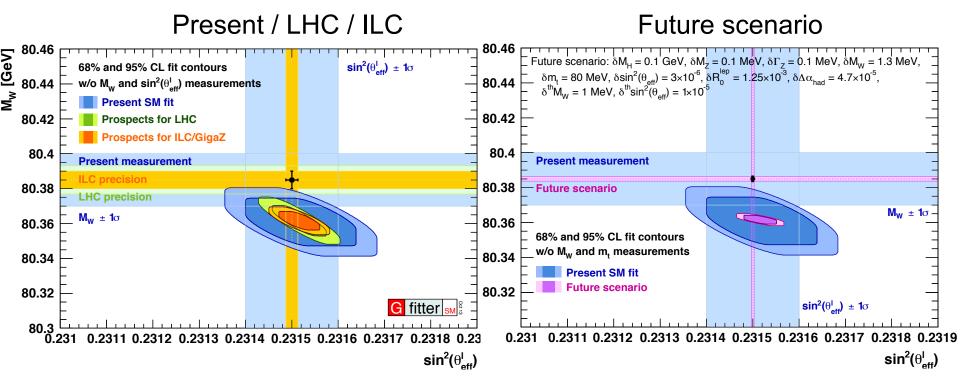
$$M_{\rm H} = 126^{+20}_{-17} \,\,{\rm GeV}$$

Prospects of the EW fit: Higgs mass (94 GeV)



- If EWP-data central values are unchanged, i.e. they keep favoring low value of Higgs mass (94 GeV), >5σ discrepancy with measured Higgs mass.
 - In both ILC and TLEP scenarios.

Prospects of the EW fit: W mass and $sin^2\theta^{I}_{eff}$



Max Baak (CERN)

The ElectroWeak fit of Standard Model and Beyond

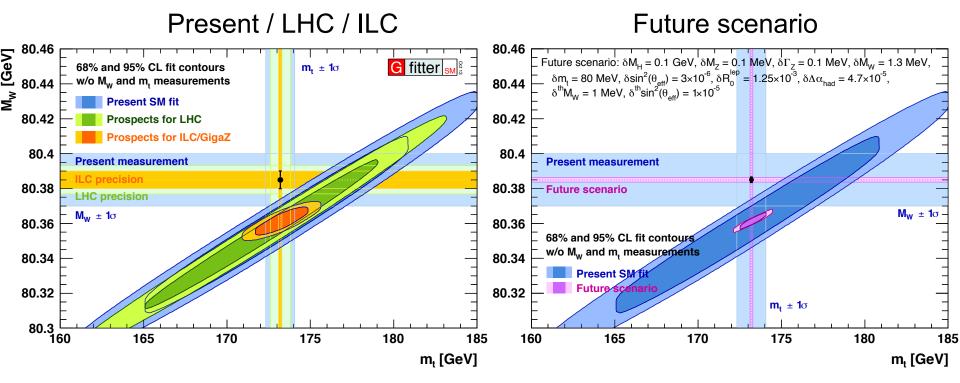
Prospects of the EW fit: W mass versus $sin^2\theta^{I}_{eff}$

- Huge reduction of uncertainty on indirect determinations of m_W, and sin²θ^I_{eff}, by a factor of ≥3 (≥4-5) at ILC (TLEP).
- Assuming central values of M_W and sin²θ^I_{eff} do not change, a deviation between the SM prediction and the direct measurements would be prominently visible, at both ILC and TLEP.
 - But also in LHC-300 scenario, from improved theory uncertainties.

Confrontation of measurement and prediction

- Breakdown of individual contributions to errors of M_W and $\sin^2\theta_{eff}$
- Parametric uncertainties (not the full fit).

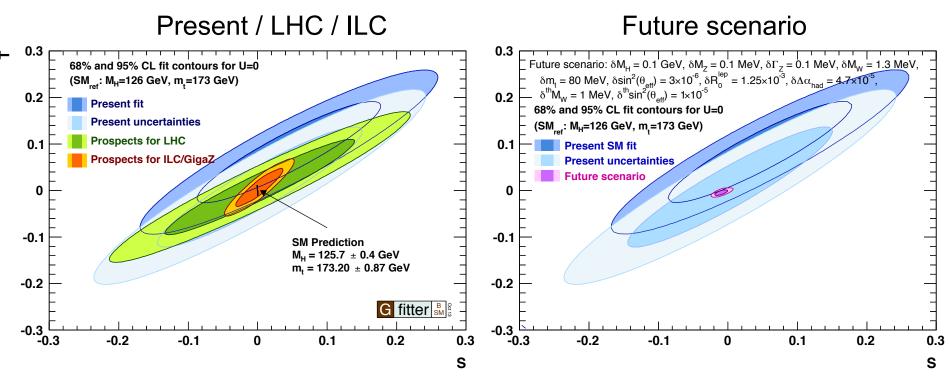
error due to uncertainty $(\pm 1\sigma)$


Parameter	Scenario	$\delta_{ m meas}$	$\delta_{ m pred}$	δ_{exp}	δM_Z	δm_t	$\delta\Delta\alpha_{\rm had}$	$\delta lpha_{S}$	$\delta_{ m theo}$
	Present	15	10.4	6.4	2.6	5.2	1.8	1.7	4.0
M_W [MeV]	LHC	8	5.8	4.8	2.6	3.6	0.9	1.7	1.0
	ILC	5	3.8	2.8	2.6	0.6	0.9	0.4	1.0
	Future	1.3	2.0	1.0	0.1	0.5	0.9	0.3	1.0
	Present	16	9.5	4.8	1.5	2.8	3.5	1.0	4.7
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	LHC	16	4.1	3.1	1.5	1.9	1.6	1.0	1.0
	ILC	1.3	3.2	2.2	1.5	0.3	1.6	0.2	1.0
	Future	0.3	2.7	1.7	0.1	0.3	1.6	0.2	1.0
^(o) In units of 1	0-5								

m units of 10

- M_{W} and sin² θ^{I}_{eff} are sensitive probes of new physics! In all scenarios.
- At ILC/GigaZ, precision of M_7 will become important again.
- At TLEP ('Future'), limited by external inputs: theory errors and $\Delta \alpha_{had}$

Prospects of the EW fit: W versus top mass



 Huge reduction of uncertainty on indirect determinations of m_t and m_W by a factor of ≥3 (≥5) at ILC (TLEP).

 Assuming central values of m_t and M_W do not change, a deviation between the SM prediction and the direct measurements would be prominently visible.

Prospects of EW fit: S versus T

- For STU parameters, improvement of factor of ≥4 (≥10) is possible at ILC (TLEP).
- Again, at both ILC and TLEP a deviation between the SM predictions and direct measurements would be prominently visible.

Predicted uncertainties from EW fit

	error due to uncertainty $(\pm 1\sigma)$									
Parameter	$\delta_{\rm meas}$	$\delta_{ m fit}^{ m tot}$	$\delta_{\rm fit}^{\rm exp}$	$\delta_{\mathrm{fit}}^{\mathrm{theo}}$	δM_W	δM_Z	δm_t	$\delta \sin^2\!\theta^\ell_{\rm eff}{}^{\scriptscriptstyle(\circ)}$	$\delta\Delta\alpha_{\rm had}{}^{(\circ)}$	$\delta \alpha_s{}^{(\bigtriangleup)}$
					ILC pros	spects				
M_H [GeV]	< 0.1	$^{+9.6}_{-9.0}$	$^{+6.9}_{-6.6}$	$^{+2.7}_{-2.4}$	$^{+4.2}_{-0.8}$	$^{+4.4}_{-4.0}$	$^{\mathrm +0.9}_{\mathrm -0.8}$	$^{+3.1}_{-3.3}$	$^{+4.2}_{-4.1}$	$^{+0.6}_{-0.6}$
M_W [MeV]	5	3.6	1.9	1.7	_	1.7	0.3	1.2	0.7	0.2
M_Z [MeV]	2.1	3.7	2.6	1.1	2.4	_	0.5	1.3	1.9	0.3
$m_t ~[{ m GeV}]$	0.1	1.0	0.7	$^{+0.3}_{-0.2}$	$^{+0.5}_{-0.6}$	0.5	_	$^{+0.3}_{-0.2}$	0.4	_
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	1.3	3.2	2.0	1.2	1.7	1.2	0.2	_	1.5	0.1
$\Delta \alpha_{\rm had} \ ^{(\circ)}$	4.7	8.6	5.7	2.9	2.5	4.2	0.8	3.9	_	0.5
				F	uture pro	ospects				
M_H [GeV]	< 0.1	5.3	3.3	2.0	3.0	0.3	1.0	$\substack{+0.0\\-1.2}$	3.2	0.6
M_W [MeV]	1.3	1.9	0.4	1.5	_	0.1	0.3	0.2	0.1	0.1
M_Z [MeV]	0.1	1.5	1.0	0.5	1.0	_	0.3		0.9	0.4
$m_t [{ m GeV}]$	0.08	0.38	0.24	0.14	0.24	0.03	_	0.01	0.22	0.02
$\sin^2 \theta_{\rm eff}^{\ell}$ (°)	0.3	$^{+2.8}_{-2.4}$	1.4	$^{+1.5}_{-1.1}$	1.2		0.1	_	1.3	0.5
$\Delta \alpha_{\rm had} \ ^{(\circ)}$	4.7	0.4	0.1	0.3			0.1	0.1	_	

 $^{(\circ)}$ In units of 10^{-5} . $^{(\bigtriangleup)}$ In units of 10^{-4}

- Breakdown of uncertainties derived from EW fit. (Note: *correlated* errors.)
- Compared to parametric breakdown: reduced experimental, but increased theory errors. Slightly smaller total errors.

	Experimental input $[\pm 1\sigma]$			Indirect of	letermination	$[\pm 1\sigma_{\mathrm{exp}}\pm 1\sigma_{\mathrm{theo}}]$
Parameter	LHC	ILC/GigaZ	Future	LHC	ILC/GigaZ	Future
M_H [GeV]	< 0.1	< 0.1	< 0.1	$^{+20}_{-18}^{+3}_{-2}$	$^{+6.9}_{-6.6}$ $^{+2.7}_{-2.4}$	± 3.3 ± 2.0
M_W [MeV]	8	5	1.3	± 4.8 ± 1.0	± 1.9 ± 1.7	± 0.4 ± 1.5
$M_Z~[{ m MeV}]$	2.1	2.1	0.1	$\pm 6.9\ \pm 0.8$	± 2.6 ± 1.1	± 1.0 ± 0.5
$m_t [{ m GeV}]$	0.6	0.1	0.08	$\pm 1.4\ \pm 0.2$	$\pm 0.7 \ ^{+0.3}_{-0.2}$	$\pm 0.24 \ \pm 0.14$
Γ_Z [MeV]	2.3	0.8	0.1	$\pm 6.9\ \pm 0.8$	± 2.6 ± 1.1	± 0.4 ± 0.1
$\sin^2 heta_{ m eff}^\ell$ [·10 ⁻⁵]	16	1.3	0.3	± 2.7 ± 1.1	± 2.0 ± 1.2	$\pm 1.4 \ ^{+1.5}_{-1.1}$
$R_l^0 \left[\cdot 10^{-3} ight]$	25	4	1.3	_	_	_
$\Delta \alpha_{\rm had}^5(M_Z^2) [.10^{-5}]$	4.7	4.7	4.7	± 36 ± 4	± 5.7 ± 2.9	± 0.1 ± 0.3
$\alpha_{\scriptscriptstyle S}(M_Z^2)~[\cdot 10^{-4}]$	_	_	_	± 27 ± 1	$^{+6.8}_{-6.3}$ $^{+0.3}_{-0.2}$	$\pm 3.8\ \pm 0.1$
$\delta_{ m th} M_W$ [MeV]	1	1	1	_	_	_
$\delta_{\rm th} \sin^2 \theta_{\rm eff}^\ell$ [$\cdot 10^{-5}$]	1	1	1	_	_	_
$\overline{S _{U=0}}$	_	_	_	± 0.09	± 0.02	< 0.01
$T _{U=0}$	_	_	_	± 0.06	± 0.02	< 0.01

- Including M_H measurement, M_W, sin²θ^I_{eff} have become sensitive probes of new physics.
- Prospects: including new data electroweak fits remain very interesting in coming years!
 - Significant increase in predictive power of the fit obtained in all three scenarios studied.
- ILC/GigaZ and TLEP provide excellent new physics sensitivity.
- Assuming good control over systematic effects, predictions for M_W, sin²θ^I_{eff}, STU are improved with a factor of ≥3 (≥5) at ILC (TLEP).
- Predicted uncertainties on M_W , $sin^2\theta_{eff}^I$ dominated by:
 - ILC: δM_Z
 - TLEP: external inputs: δ (theory), $\delta\Delta\alpha_{had}$

Thanks!

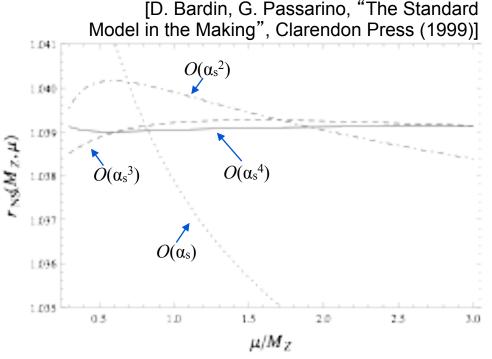
A Generic Fitter Project for HEP Model Testing

Backup

New R⁰_b calculation [A. Freitas et al., JHEP 1208, 050 (2012)]

- The branching ratio R_b^0 : partial decay width of Z \rightarrow bb to Z \rightarrow qq
- Freitas et al: full EW 2-loop calculation of $Z \rightarrow bb$
- Contribution of same terms as in the calculation of sin²θ^{bb}_{eff}
 → cross-check of two results found good agreement
- Two-loop EW corrections now much smaller than experimental uncertainty (6.6x10⁻⁴)

	1-loop EW and QCD correction to FSR	2-loop EW correction	2-loop EW and 2+3-loop QCD correction to FSR	1+2-loop QCD correction to gauge boson self-energies
$M_{ m H}$ [GeV]	$\begin{array}{c} \mathcal{O}(\alpha) + \mathrm{FSR}_{\alpha,\alpha_{\mathrm{s}},\alpha_{\mathrm{s}}^{2}} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha_{\rm ferm}^2) + {\rm FSR}_{\alpha_{\rm s}^3,\alpha\alpha_{\rm s},m_b^2\alpha_{\rm s},m_b^4} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s},\alpha\alpha_{\rm s}^2)\\ [10^{-4}] \end{array}$
100	-35.66	-0.856	-2.496	-0.407
200	-35.85	-0.851	-2.488	-0.407
400	-36.09	-0.846	-2.479	-0.406

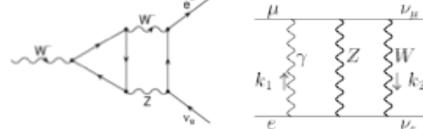

The ElectroWeak fit of Standard Model

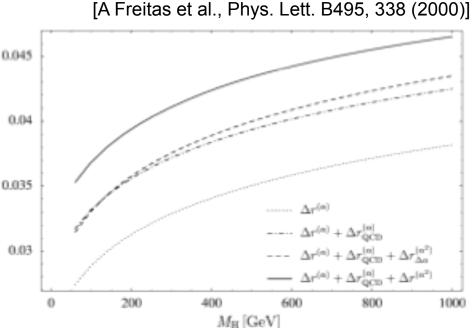
Radiator Functions

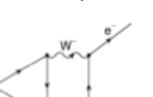
- Partial widths are defined inclusively: contain both QCD and QED contributions.
- Corrections expressed as so-called radiator functions R_{A,f} and R_{V,f}

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left(|g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling α_s
- Recently, full four-loop calculation of QCD Adler function became available (N³LO)
- Much-reduced scale dependence!
- Theoretical uncertainty of 0.1 MeV, compared with experimental uncertainty of 2.0 MeV.

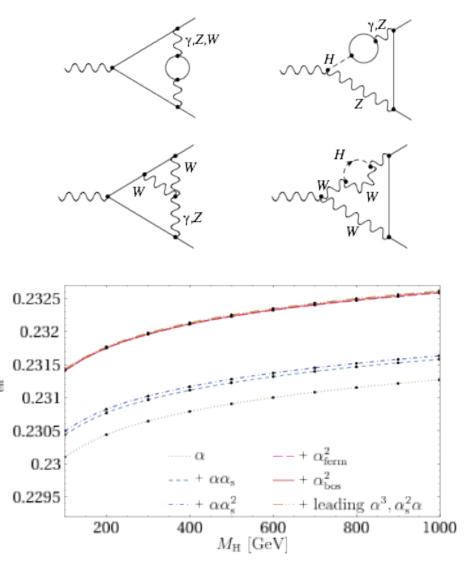

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]
 [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]




Calculation of M_w

- Full EW one- and two-loop calculation of fermionic and bosonic contributions.
- One- and two-loop QCD corrections and leading terms of higher order corrections.
- Results for Δr include terms of order $O(\alpha)$, $O(\alpha\alpha_s)$, $O(\alpha\alpha_s^2)$, $O(\alpha^2_{ferm})$, $O(\alpha_{bos}^2)$, $O(\alpha_{as}^2\alpha_{s}m_{t}^4)$, $O(\alpha_{m_t}^3m_{t}^6)$
- **Uncertainty estimate:**
 - Missing terms of order $O(\alpha^2 \alpha_s)$: about 3 MeV (from $O(\alpha^2 \alpha_s m_t^4))$
 - Electroweak three-loop correction $O(\alpha^3)$: < 2 MeV
 - Three-loop QCD corrections **Ο(α_s³):** < 2 MeV
- Total: δM_w ≈ 4 MeV

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]

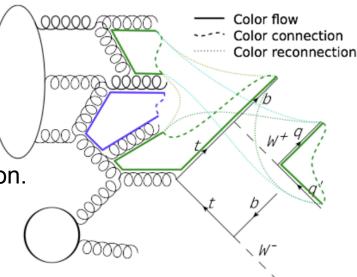


Calculation of $sin^2(\theta_{eff}^I)$

Effective mixing angle:

$$\sin^2 heta_{
m eff}^{
m lept} = \left(1 - M_{
m W}^2/M_{
m Z}^2
ight)\left(1 + \Delta\kappa
ight)$$

- Two-loop EW and QCD correction to Δκ known, leading terms of higher order QCD corrections.
- Fermionic two-loop correction about 10⁻³, whereas bosonic one 10⁻⁵.
- Uncertainty estimate obtained with different methods, geometric progression, leading to total of: $\delta sin^2(\theta^{l}_{eff}) = 4.7 \times 10^{-5}$


[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)]

[M Awramik et al., JHEP 11, 048 (2006)]

Uncertainty in Top mass definition

- Difficult to define a pole mass for heavy, unstable and colored particle.
 - Single top decays before hadronizing. To have colorless final states, additional quarks needed.
 - Non-perturb. color-reconnection effects in fragmentation → biases in simulation.
 - 'Renormalon' ambiguity in top mass definition.
 - For pole mass, not for MS-bar scheme.
 - Impact of finite top width effects.
- Result: m_t^{exp} ≠ m_t^{pole}, and event-dependent.
- The top mass extracted in hadron collisions is not well defined below a precision of $O(\Gamma_t) \sim 1 \text{ GeV}$
- Hard to estimate additional theo. uncertainties. With 0.5 GeV on m_t:
 - $M_{H} = 90^{+34}_{-21}$ GeV, $M_{W} = 80.359 \pm 0.013$ GeV, $\sin^2 \theta_{eff}^{I} = 0.23148 \pm 0.00010$.
 - Only small deterioration in precision.

Input correlation coefficients between Z pole measurements

	M_Z	Γ_Z	$\sigma_{ m had}^0$	R^0_ℓ	$A^{0,\ell}_{\scriptscriptstyle\mathrm{FB}}$		$A^{0,c}_{\scriptscriptstyle \mathrm{FB}}$	$A^{0,b}_{\scriptscriptstyle \mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
M_Z	1	-0.02	-0.05	0.03	0.06	$A^{0,c}_{ m FB}$	1	0.15	0.04	-0.02	-0.06	0.07
Γ_Z		1	-0.30	0.00	0.00	$A^{0,b}_{\scriptscriptstyle { m FB}}$		1	0.01	0.06	0.04	-0.10
$\sigma_{ m had}^0$			1	0.18	0.01	A_c			1	0.11	-0.06	0.04
$egin{array}{c} R^0_\ell\ A^{0,\ell}_{\scriptscriptstyle m FB} \end{array}$				1	-0.06	A_b				1	0.04	-0.08
$A^{0,\ell}_{\scriptscriptstyle \mathrm{FB}}$					1	R_c^0					1	-0.18

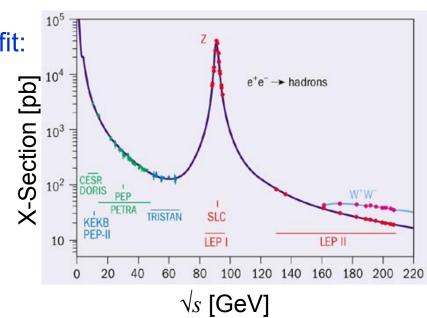
Table 2: Correlation matrices for observables determined by the Z lineshape fit (left), and by heavy flavour analyses at the Z pole (right) [56].

Measurements at the Z-pole (1/2)

- Total cross-section of $Z \rightarrow f\bar{f}$
 - Expressed in terms of partial decay width of initial and final width:

$$\sigma^Z_{f\bar{f}} = \sigma^0_{f\bar{f}} \frac{s\Gamma^2_Z}{(s - M_Z^2)^2 + s^2\Gamma^2_Z/M_Z^2} \frac{1}{R_{\rm QED}} \quad \text{with} \quad \sigma^0_{f\bar{f}} = \frac{12\pi}{M_Z^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{\Gamma_Z^2}$$

Corrected for QED radiation


- Full width: $\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}$
- (Correlated set of measurements.)
- Set of input (width) parameters to EW fit:
 - Z mass and width: M_z , Γ_z
 - Hadronic pole cross section:

$$\sigma_{
m had}^0 = 12\pi/M_Z^2 \,\cdot\, \Gamma_{ee}\Gamma_{
m had}/\Gamma_Z^2$$

• Three leptonic ratios (lepton univ.):

$$R_\ell^0 = R_e^0 = \Gamma_{
m had} / \Gamma_{ee} \left(= R_\mu^0 = R_\tau^0
ight)$$

• Hadronic-width ratios: R_b^0 ,

Definition of Asymmetry

• Distinguish vector and axial-vector couplings of the Z

$$A_{f} = \frac{g_{L,f}^{2} - g_{R,f}^{2}}{g_{L,f}^{2} + g_{R,f}^{2}} = \frac{2g_{V,f} g_{A,f}}{g_{V,f}^{2} + g_{A,f}^{2}}$$

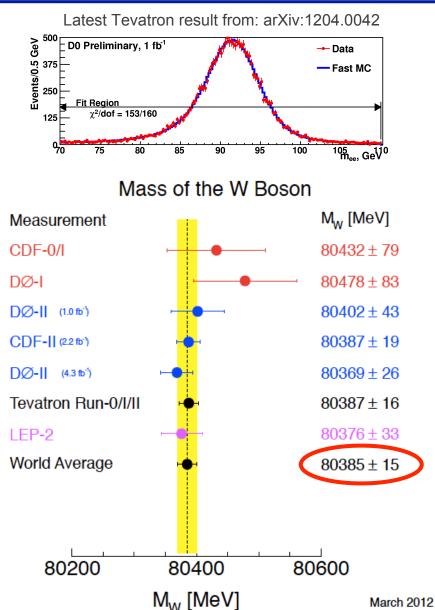
Directly related to: $\sin^{2} \theta_{\text{eff}}^{f\bar{f}} = \frac{1}{4Q_{f}} \left(1 + \mathcal{R}e\left(\frac{g_{V,f}}{g_{A,f}}\right) \right)$

- Observables
 - In case of no beam polarisation (LEP) use final state angular distribution to define *forward/backward asymmetry:*

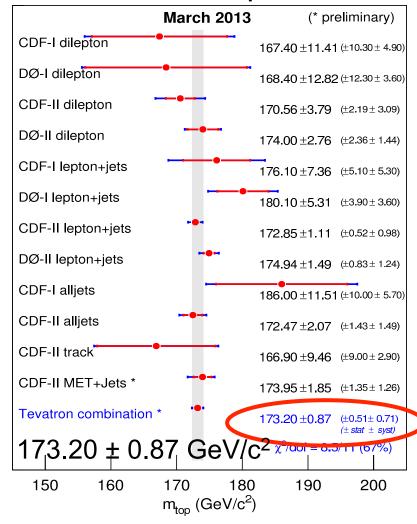
$$A^f_{L\!R} = rac{N^f_L - N^f_R}{N^f_L + N^f_R} rac{1}{\langle |P|_e
angle} \quad A^0_{L\!R} =$$

 $A_{FB}^f = \frac{N_F^J - N_B^J}{N_D^f + N_D^f}$

• Measurements: $A_{FB}^{0,\ell}, A_{FB}^{0,c}, A_{FB}^{0,b}$ A_ℓ, A_c, A_b


 $A_{FB}^{0,f} = \frac{3}{4}A_eA_f$

Ae


Latest averages for M_w and m_{top}

Tevatron result from: arXiv:1305.3929

Mass of the Top Quark

(LHC average: 173.29 ± 0.95 GeV/c²)

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

• Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Leptonic term known up to *four* loops (for $q^2 \gg m_l^2$) [C.Sturm, arXiv: 1305.0581]
- Top quark contribution known up to 2 loops, small: -0.7x10⁻⁴ [M. Steinhauser, PLB 429, 158 (1998)]

The electromagnetic coupling

- The EW fit requires precise knowledge of $\alpha(M_Z)$ better than 1% level
 - Enters various places: hadr. radiator functions, predictions of M_W and $sin^2\theta^f_{eff}$
- Conventionally parametrized as (α(0) = fine structure constant) :

$$\alpha(s) = rac{lpha(0)}{1 - \Delta lpha(s)}$$

Evolution with renormalization scale:

$$\Delta \alpha(s) = \Delta \alpha_{\rm lep}(s) + \Delta \alpha_{\rm had}^{(5)}(s) + \Delta \alpha_{\rm top}(s)$$

- Hadronic contribution (from the 5 light quarks) completely dominates overall uncertainty on $\alpha(M_Z)$.
- Difficult to calculate, cannot be obtained from pQCD alone.
 - Analysis of low-energy e⁺e⁻ data
 - Usage of pQCD if lack of data

$$\Delta \alpha_{had}^{(5)}(M_Z) = (274.9 \pm 1.0) \cdot 10^{-4}$$

Similar analysis to evaluation of hadronic contribution to (g-2)_µ

[M. Davier et al., Eur. Phys. J. C71, 1515 (2011)]

Theoretical inputs

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_E M_Z^2}}\right)$

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!
- In EW fit with Gfitter we use state-of-the-art calculations:
 - *M_W* Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
 - sin²θ^f_{eff} Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - Γ_{had} QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]

The ElectroWeak fit of Standard Model

- N³LO prediction of the hadronic cross section
 - Partial width of $Z \rightarrow bb$ [Freitas et al., JHEP08, 050 (2012)] EW 2-loop calc.

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_E M_Z^2}}\right)$

Theoretical inputs

- Radiative corrections are important!
 - E.g. consider tree-level EW unification relation:
 - This predicts: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Experiment: $M_W = (80.385 \pm 0.015) \text{ GeV}$
- Without loop corrections: shift of 400 MeV, 27σ discrepancy!
- In EW fit with Gfitter we use state-of-the-art calculations:
 - *M_W* Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)]
 - sin²θ^f_{eff} Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - Γ_{had} QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]
 - N³LO prediction of the hadronic cross section
 - *R_b*

Partial width of $Z \rightarrow bb$ [Freitas et al., JHEP08, 050 (2012)] \leftarrow Update! EW 2-loop calc.

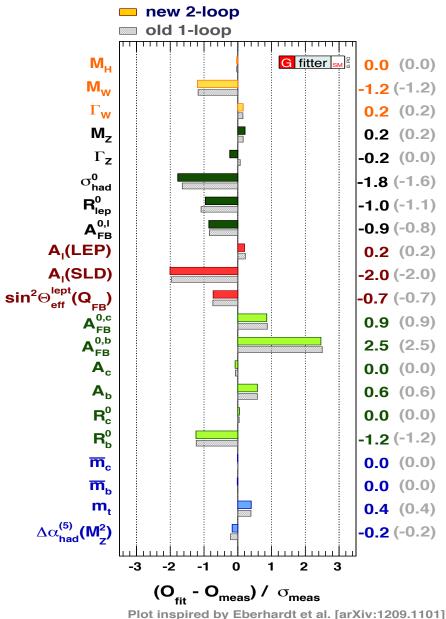
- Two nuisance parameters in EW fit for theoretical uncertainties:
 - δM_W (4 MeV), $\delta sin^2 \theta'_{eff}$ (4.7x10⁻⁵)

 $M_W^2\Big|_{\text{tree-level}} = \frac{M_Z^2}{2} \cdot \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}}\right)$

- The branching ratio R_b^0 = partial decay width of Z→bb to Z→qq
- We use calculation with full EW 2-loop corrections of $Z \rightarrow bb$
 - From A. Freitas etal, JHEP 1208 (2012) 050, Erratum. 1305 (2013) 074.

Recently a mistake was found in this calculation.

- Old: Two-loop corrections to R⁰_b comparable to experimental uncertainty (6.6x10⁻⁴)
 - Moved theoretical prediction by 1.5σ
 - Much more than the originally estimated theory uncertainty!
- New: bug in calculation of R⁰_b has been corrected, resulting in a sizable reduction of the size of the two-loop correction.
- All results shown here and on Gfitter homepage use the corrected R⁰_b calculation.



Full EW 2-loop calculations

- Contains full two-loop fermionic EW corrections to the Z-boson width and production rate.
- Only small impact on EW fit results compared with 1-loop results.

The ElectroWeak fit of Standard Model and Beyond

Electroweak Fit – SM Fit Results

	From the	Parameter	Input value	Free in fit	Fit Result	Fit without M_H measurements	Fit without exp. input in line	
	Gfitter	$M_H~[{ m GeV}]^\circ$	$125.7_{-0.4}^{+0.4}$	yes	$125.7^{+0.4}_{-0.4}$	94.7^{+25}_{-22}	94.7^{+25}_{-22}	
	Group,	M_W [GeV]	80.385 ± 0.015	_	$80.367^{+0.006}_{-0.007}$	$80.367^{+0.006}_{-0.007}$	80.360 ± 0.011	
	EPJC 72,	Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001	
	2205	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1878 ± 0.0021	91.1978 ± 0.0114	
		Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4954 ± 0.0014	2.4954 ± 0.0014	2.4950 ± 0.0017	
	(2012)	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.479 ± 0.014	41.479 ± 0.014	41.471 ± 0.015	
	、	R_ℓ^0	20.767 ± 0.025	_	20.740 ± 0.017	20.740 ± 0.017	20.715 ± 0.026	
		$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	$0.01626^{+0.0001}_{-0.0002}$	$0.01626^{+0.0001}_{-0.0002}$	0.01624 ± 0.0002	
	Left: full fit	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	_	0.1472 ± 0.0007	0.1472 ± 0.0007	-	
		$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	$0.23149^{+0.00010}_{-0.00008}$	$0.23149^{+0.00010}_{-0.00008}$	0.23150 ± 0.00009	
	incl. M _H	A_c	0.670 ± 0.027	_	$0.6679^{+0.00034}_{-0.00028}$	$0.6679^{+0.00034}_{-0.00028}$	0.6680 ± 0.00031	
		A_b	0.923 ± 0.020	-	$0.93464^{+0.00005}_{-0.00007}$	$0.93464^{+0.00005}_{-0.00007}$	0.93463 ± 0.00006	
		$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	0.0738 ± 0.0004	0.0738 ± 0.0004	0.0737 ± 0.0004	
	Middle: not	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0005	0.1032 ± 0.0005	0.1034 ± 0.0003	
	incl. M _H	R_c^0	0.1721 ± 0.0030	_	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006	
		R_b^0	0.21629 ± 0.00066	—	0.21548 ± 0.00005	0.21548 ± 0.00005	0.21547 ± 0.00005	
		\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-	
	Right: fit	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-	
	incl M _H ,	$m_t \; [\text{GeV}]$	173.20 ± 0.87	yes	173.53 ± 0.82	173.53 ± 0.82	$176.11_{-2.35}^{+2.88}$	
	not the row	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) ^{(\dagger \triangle)}$	2757 ± 10	yes	2755 ± 11	2755 ± 11	2718_{-43}^{+49}	
	not the row	$\alpha_s(M_Z^2)$	-	yes	$0.1190^{+0.0028}_{-0.0027}$	$0.1190^{+0.0028}_{-0.0027}$	0.1190 ± 0.0027	
		$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes	4	4	-	
		$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\rm theo}$	yes	-0.6	-0.5	-	

The ElectroWeak fit of Standard Model