EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Energy of the 2p1h intruder state in ³⁴Al: an extension of the "island of inversion"?

May 30, 2013

P. Ascher¹, D. Atanasov¹, B. Blank², K. Blaum¹, Ch. Borgmann³, M. Breitenfeld⁵,

S. George¹, M. Gerbaux², S. Grévy², F. Herfurth⁴, A. Herlert⁴, M. Kowalska⁵,

S. Kreim^{1,5}, R. Lica⁶, D. Lunney⁷, V. Manea⁷, N. Marginean⁶, S. Naimi¹, F. Negoita⁶,

D. Neidherr⁴, M. Rosenbusch⁸, F. Rotaru⁶, L. Schweikhard⁸, F. Wienholtz⁸, R.N. Wolf⁸, K. Zuber⁹

¹Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany ²Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex, France

³Uppsala University, P.O. Box 516, SE-751 05 Uppsala, Sweden

⁴GSI, Planckstrasse 1, 64291 Darmstadt, Germany

⁵CERN, Physics Department, 1211 Geneva 23, Switzerland

⁶IFIN-HH, 077125 Bucharest-Magurele, Romania

⁷Centre de Spectromérie Nucléaire et de Spectrométrie de Masse, IN2P3/CNRS-Université de Paris Sud, F-91405,Orsay, France

⁸Ernst-Moritz-Arndt-Universität, Insitut für Physik, 17487 Greifswald, Germany

⁹Technical University, Dresden, Germany

Spokesperson: Pauline Ascher (pauline.ascher@mpi-hd.mpg.de) **Local contact:** Susanne Kreim (susanne.waltraud.kreim@cern.ch)

Abstract

The second 0^+ state in ³⁴Si, of high importance for the understanding of the island of inversion at N=20, has been recently observed [Rotaru12] through the beta decay of a predicted long-lived low-lying isomeric 1⁺ state in ³⁴Al. We intend to measure the unknown excitation energy of this isomer using the ISOLTRAP Penning-trap mass spectrometer. Since a recent experiment at ISOLDE (IS-530) [Negoita13] showed that the full beta strength in the decay of ³⁴Mg goes through this 1⁺ state in ³⁴Al, we propose to perform a direct mass measurement of the daughter ³⁴Al ions trapped after the decay of ³⁴Mg.

Mass measurements indicate that the 4^- ground state in ³⁴Al may be an excited state, the ground state being therefore the intruder 1^+ state. In another run, we propose to perform a remeasurement of the mass of the 4^- ground state.

Requested shifts: 19 shifts, split into 2 runs

1. Motivation

The so-called island of inversion around N=20 is one of the most important discoveries in the last decades of exotic nuclei studies. This island refers to a region where the ground states are dominated by neutron excitations across the N=20 shell gap, called intruder states. The first unexpected observations date from the 1970's [Thibault75][Huber78] when ³¹Na and ³²Mg showed atypical binding energies and charge radii. This was interpreted as strong deformation, decreasing the N=20 shell gap, and allowing excitations to the fp shell.

In this context, the isotope ³⁴Si located at the boundary of the island was studied to better understand the inversion mechanism and in particular, to follow the developement of the intruder configuration from the spherical ³⁶S to the deformed ³²Mg. For these studies, the beta decay of ³⁴Al was investigated in several experiments [Baumann89][Nummela01][Rotaru12] to establish a detailed decay scheme and thus reach the energy of the first excited states of ³⁴Si. In particular, the first excited 0⁺ state (0⁺₂) was searched for, in order to probe the deformation of this transitional nucleus.

Despite 30 years of experimental efforts, the quest for this 0_2^+ state in ³⁴Si failed until a recent experiment at GANIL [Rotaru12]. This experiment was based on a hypothesis that the 0_2^+ state could be populated by the β^- decay of a predicted isomeric state in ³⁴Al. Shell-model calculations using the SPDF-M and SPDF-M' interactions [Himpe08] predicted for this state a spin/parity of 1⁺ with a wave function dominated by the excitation of one neutron across the N=20 shell gap, leading to a two-particle-one-hole (2p1h) intruder configuration, leaving a hole in the neutron $d_{3/2}$ orbit (see Figure 1). Following this prediction, the 1⁺ state would decay mostly by a transition $\nu d_{3/2} \rightarrow \pi d_{5/2}$ leading mostly to the 2p2h 0_2^+ state in ³⁴Si.

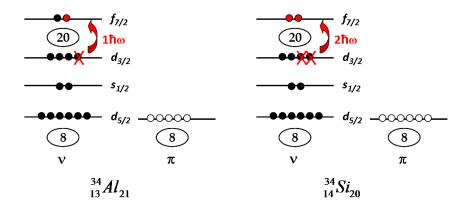


Figure 1: Scheme of the shell orbitals for ${}^{34}Al$ and ${}^{34}Si$. In red are shown the neutron excitations across the shell gap, i.e the 1⁺ state in ${}^{34}Al$ (2p1h configuration) and the 0_2^+ state in ${}^{34}Si$ (2p2h configuration).

The results of the experiment are in agreement with this hypothesis: the 0_2^+ state of ³⁴Si was observed for the first time after the beta decay of implanted ³⁴Al ions, the

excitation energy and the lifetime of this state could be measured from e^+e^- pair energy measurements (see Figure 2). Although the half-life of the beta-decaying state of ³⁴Al was determined to be 26(1)ms, distinctly different from the known half-life of the ³⁴Al ground state (56.3(5) ms), the excitation energy of this state could not be measured.

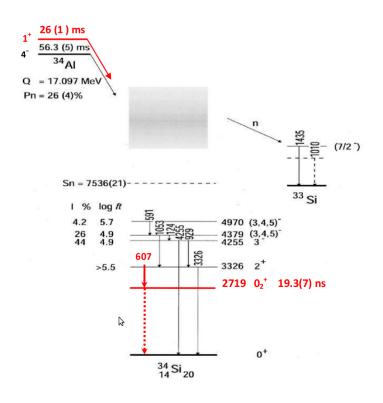


Figure 2: Beta-decay scheme of ³⁴Al [Nummela01]. The information in red correspond to the new data from [Rotaru12].

Few experiments have investigated the level scheme of ³⁴Al. From the measured g-factor of the ground state |g|=0.539(2) [Himpe08], a spin/parity of 4⁻ was assigned to the ground state. This conclusion was partly based on the beta-decay studies mentioned above. This magnetic moment measurement allowed to conclude that ³⁴Al is a transition isotope of the island of inversion, from the normal Z=14 to the deformed Z=12.

Another way to study the ³⁴Al level scheme and characterize the recently discovered 1^+ state is to investigate the beta decay of ³⁴Mg. This was performed in a recent experiment at ISOLDE (IS-530) [Negoita13]. One of the main goals of this experiment was to measure the energy of the 1^+ state in ³⁴Al, assuming that the decay populates both 1^+ and 4^- states, directly or indirectly. However, it turned out that all the beta strength in the decay of ³⁴Mg proceeds through the 1^+ state in ³⁴Al since none of the gamma transition in ³⁴Si known to be strongly populated in the beta decay of the 4^- state were observed, in particular the 124 keV transition which can be populated only by the 4^- state (see Figure 2). This experiment allowed to remeasure the half-life of ³⁴Mg to 63(1) ms [Negoita13], which is not in agreement with the value obtained in a previous experiment (20(10) ms) [Langevin84], and to measure the branching ratio of the beta-delayed neu-

tron emission (β n and β 2n) to $P_n = 35(10)\%$. A first level scheme of ³⁴Al could also be established; the analysis is still in progress.

Therefore the only way to measure the energy of this isomer is to perform a direct mass measurement, which is the subject of this proposal. Since it has been demonstrated that the decay of ³⁴Mg populates mostly the 1⁺ state of ³⁴Al (with a branching ratio of 65(10)%), one can produce a ³⁴Mg beam, and perform a direct mass measurement on the daughter ions.

Measuring the excitation energy of this isomer will be an important input to better understand the inversion mechanism in this region. In addition, it could explain unexpected behavior observed from mass measurements of Mg and Al isotopes around N=20[Audi12]. Figure 3 shows the two-neutron separation energies S_{2n} of Al and Mg isotopes for $20 \le N \le 22$. Within the error bars the curves touch at N=21, with an S_{2n} value for ³⁴Al of 8110(70) keV and a value of 8058(4) keV for ³³Mg. This behavior is unusual because generally, for a given N, when one proton is added, the nucleus is stabilized due to the attractive character of the proton-neutron interaction, leading to a higher value of S_{2n} . In addition, a recent experiment was performed using the TITAN spectrometer at ISAC [Dilling13] to measure the mass of the isotopes around this region. The new mass excess of ³⁴Al and ³³Mg measured with a higher precision confirm this trend, and even show a lower value of S_{2n} for ³⁴Al compared to ³³Mg.

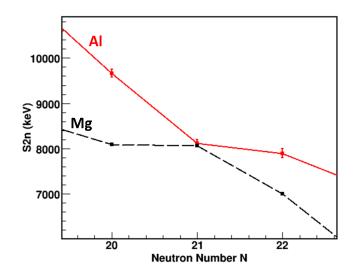


Figure 3: Two neutron separation energies (S_{2n}) in keV for the Al and Mg isotopes for $20 \le N \le 22$.

This odd behavior could be explained by an erroneous assignment of the ground state and the isomeric state in ³⁴Al. If the measured mass of ³⁴Al corresponds to the isomeric state, the binding energy of ³⁴Al is underestimated, which would explain the overlap of the S_{2n} values at N=21. Based on this assumption, we propose here to measure for the first time the binding energy of the 1^+ state populated by the beta decay of ${}^{34}Mg$. In another run, we request ${}^{34}Al$ to measure the binding energy of the 4^- state. By comparing the two masses, not only will the ordering of the states be clarified but also the excitation energy will be determined.

If the intruder state is indeed assigned to the ground state, it would mean that the island of inversion is larger than previously thought.

2. In-trap decay measurement with ISOLTRAP

We request a ³⁴Mg beam from an UC_x target using the resonance ionization laser ion source (RILIS). The ³⁴Mg beam from ISOLDE will be delivered to the Penning-trap mass spectrometer ISOLTRAP, in order to perform a direct mass measurement of the state in the trapped daughter nuclide ³⁴Al that is populated by the decay of ³⁴Mg. Such an in-trap decay mass measurement has already been demonstrated with ISOLTRAP for $^{61-63}$ Fe [Herlert12].

2.1 ISOLTRAP set-up

High-precision mass measurements have been performed for many years with the ISOLTRAP set-up, reaching a relative uncertainty of typically 10^{-8} . This spectrometer is described in detail in [Mukherjee08][Wolf13] and a scheme of the set-up is shown in Figure 4.

To reach a high precision, the method requires an isobarically pure, low-emittance beam. For this purpose, the 50-keV continuous beam from ISOLDE is first injected in a gas-filled radio-frequency quadrupole (RFQ) where the ions are cooled via collisions with helium buffer gas. The ions leave the cooler as ion bunches towards the recently installed multireflection time-of-flight mass separator (MR-TOF MS) for purification with a resolving power on the order of 10⁵. As a third preparation step, the ions are injected in the preparation Penning trap where they are cooled and cleaned by buffer gas cooling [Savard91], before being transferred to the so-called precision trap for the mass measurement, using the time-of-flight ion-cyclotron resonance (TOF-ICR) technique [Koenig95].

2.2 Recoil-ion trapping and excitations cycle

The ³⁴Mg ions will be sent to the ISOLTRAP spectrometer and, after the steps mentioned above, trapped in the preparation trap. Usually, the ions are kept in this gas-filled Penning trap for a few 10 ms to axially cool them before the application of rf excitations. During this "waiting" time, the ³⁴Mg ions, which have a half-life of 63 ms [Negoita13], will decay and populate the 1⁺ state of ³⁴Al. These daughter nuclei will also decay over the time, with a half-life of 26 ms [Rotaru12]. From these considerations, one can calculate the optimum waiting time for which we have a maximum production of ³⁴Al ions, determined to be 66 ms, for which we get 20 ³⁴Al ions from 100 ³⁴Mg ions. This value takes also into account the branching ratio for beta-delayed neutron emission of 35(10)%.

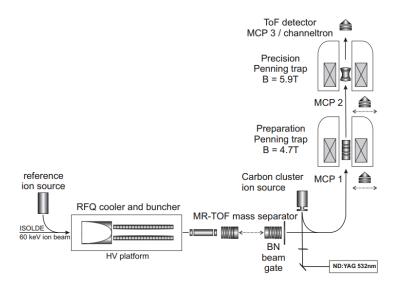


Figure 4: Schematic view of the ISOLTRAP set-up. For details, see text.

With a Q_{β} value of 11.39 MeV, the maximum recoiling energy of the daughter nucleus is 2.3 keV. The ions recoiling axially with an energy higher than the endcaps voltage (100V) are lost. The ions recoiling radially have a maximum radius of 16.8 mm, which is smaller than the trap radius of 20 mm. Simulations have been performed with the SIMBUCA program [VanGorp11][Herlert12] to estimate the trapping efficiency of the recoiling ions in the preparation trap. From these simulations, 75% of the ions are lost due to their excessive energy.

The very short 34 Al half-life of 26(1) ms is an important constraint for the duration of all different excitations, which have to be minimized.

After a magnetron excitation of about 10 ms, the daugther ³⁴Al nuclei can then be centered selectively by resonant buffer gas cooling. The resolving power needed to separate the mother ³⁴Mg ions is 2700, thus an excitation time for the quadrupolar excitation of 20 ms is sufficient. Moreover, since the excitation frequency for the ³⁴Al 1⁺ state is not known, a low conversion time is needed for a broad-band excitation. After a cooling time for the cyclotron motion of 10 ms, the ions are then transferred into the precision trap for the actual mass measurement. A magnetron excitation (10 ms) and a quadrupolar excitation (40 ms) are applied, before ejecting the ions towards the channeltron detector to perform the TOF measurement.

In parallel to the rf excitations in both traps, any ³⁴Si ions created from the decay of ³⁴Al can be cleaned by a permanent dipolar excitation at the modified cyclotron frequency of the contaminant.

Finally, the total time needed for the different excitation steps is 90 ms. One should notice that the waiting time of 66 ms in the preparation trap, during which a quadrupolar excitation to center the daughter ions can also be applied, is not taken into account in the total time since it is the time needed for the production of the ions, thus a gain and not a loss of ions.

3. Beam time requests

The yield from the ISOLDE data base is 140^{-34} Mg/ μ C from a 50g/cm³ thickness UC_x target using RILIS. However, a yield of 600 ³⁴Mg per proton pulse was obtained during the last experiment at ISOLDE [Negoita13], due to recent RILIS improvements. The estimations below are based on this yield. Assuming 20 proton pulses per minute delivered to ISOLDE, 12000 ³⁴Mg ions per minute can be obtained from the target. The only possible contamination comes from surface ionized ³⁴Al ions with a yield of approximately $15/\mu$ C, these ³⁴Al contaminants could be well separated by the HRS at the last experiment [Negoita13].

With a transmission efficiency from ISOLDE to the RFQ of 90% and an overall transport efficiency from the RFQ to the channeltron detector of 1% (including the detection efficiency of the channeltron), an efficiency of 0.9% has to be considered.

Considering the half life of 34 Mg (63 ms) and that 90% of the ions are released in about 100 ms [Gottberg13], not all the ions can be accumulated in the RFQ. From these considerations, the optimum beam gate for the RFQ is 49 ms for which 40% of the total number of ions can be accumulated.

In addition, we have to consider the cooling time in the RFQ of 5 ms and the time spent in the MR-TOF, during which some ions decay. Since no contamination is expected, the time in the MR-TOF can be very short (1.5 ms). From these considerations, an efficiency of 93% has to be added.

Concerning the losses in the purification trap before the rf excitations, as already mentioned, 20 34 Al daugther ions can be produced from 100 34 Mg ions and the trapping efficiency of these recoiling ions has been estimated to be 25%.

The losses due to the time needed for all the different excitation steps in the preparation trap and in the precision trap, during which the ions decay, has to be considered. We do not consider the production of ³⁴Al during the purification cycle of the preparation trap because we consider that all the ³⁴Al ions produced during this time are lost due to the high magnetron radius of the mother ions. Consequently, this decay time has been estimated to be 90 ms, leading to an efficiency of 9%.

In total, from all the considerations above, an overall efficiency of $1.5 \cdot 10^{-5}$ is obtained, leading to 10^{-34} Al ions detected on the channeltron every hour. A TOF resonance with 300 ions can then be obtained in 4 shifts.

One sould also consider the background on the detector coming from different sources (electronics, ions...) on the level of 0.5-1mHz. Therefore, for a sufficient signal-to-noise ratio, we request 12 shifts to determine the value of the binding energy of the 1^+ state in 34 Al. In addition, 1 shift will be needed for the stable-beam tuning as well as 1 shift for the optimization of the in-trap production of 34 Al.

In another run, we propose to produce an ³⁴Al beam, in order to remeasure the binding energy of the 4⁻ state in ³⁴Al which has a half-life of 56.3 ms. The yield from the ISOLDE data base is 86 ³⁴Al/ μ C from a 50g/cm³ thickness UC_x target using RILIS. Offline enhancements with RILIS showed that a factor of 70 more for the yield could be reached [Marsh13]. Since such a standard measurement is well established at ISOLTRAP, 4 shifts are requested, as well as 1 shift for the stable-beam tuning.

Summary of requested shifts:

We request 19 shifts split into 2 runs as follows:

14 shifts for the measurement on the 1^+ state in 34 Al: 34 Mg at maximum yield, first users on the target

5 shifts for the measurement on the 4^- state in ³⁴Al: ³⁴Al at maximum yield, first users on the target

For both runs, we request an UC_x target, the laser ionisation with RILIS, the HRS and the slits for suppressing contaminants.

The second run should preferably be scheduled right after the first one since the whole ISOLTRAP apparatus will be already tuned for the mass 34, allowing 1 shift in between for the laser tuning from Mg to Al [Marsh13].

References

[Audi12] G. Audi et al., Chinese Phys. C 36, 12 (2012).

[Baumann89] P. Baumann et al., Phys. Lett. B 228, 4 (1989).

[Dilling13] J. Dilling, Private communication.

[Gottberg13] A. Gottberg, Private communication.

[Herlert12] A. Herlert et al., Eur. Phys. J. A 48, 97 (2012).

[Himpe08] P. Himpe et al., Phys. Lett. B 658, 203 (2008).

[Huber78] G. Huber et al., Phys. Rev. C 18, 2342 (1978).

[Koenig95] M. König et al., Int. J. Mass Spectrom. 142, 95 (1995).

[Langevin84] M. Langevin et al., Nucl. Phys. A 414, 451 (1984).

[Marsh13] B. Marsh, Private communication.

- [Mukherjee08] M. Mukherjee et al., Eur. Phys. J A 35, 1-29 (2008).
- [Naimi11] S. Naimi et al., Hyp. Int. 199, 231240 (2011).
- [Negoita13] F. Negoita, Private communication.
- [Nummela01] S. Nummela et al., Phys. Rev. C 63, 044316 (2001).
- [Pritychenko01] B.V. Pritychenko et al., Phys. Rev. C 63, 047308 (2001).
- [Rotaru12] F. Rotaru et al., Phys. Rev. Lett. 109, 092503 (2012).
- [Savard91] G. Savard et al., Phys. Lett. A 158, 247-252 (1991).

- [Thibault75] C. Thibault et al., Phys. Rev. C 12, 644 (1975).
- [VanGorp11] S. Van Gorp et al., Nucl. Instr. and Met. A 638, 192200 (2011).
- [Wolf13] R.N. Wolf et al., Int. J. Mass Spectrom., DOI: 10.1016/j.ijms.2013.03.020 (2013)

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: ISOLDE central beam line and ISOLTRAP setup. The preliminary safety file is the document "safety-requirements-ISOLDE-ISOLTRAP" with the corresponding attached documents dealing with the different hazards: acetone, cadmium, ethanol, helium, isopropanol, nitrogen, and noise. Furthermore, the ISIEC file "ISIEC_ISOLTRAP_2010-11-18" is also part of the safety documents made available for the ISOLTRAP experiment.

Part of the	Availability	Design and manufacturing
ISOLTRAP setup	\boxtimes Existing	\boxtimes To be used without any modification

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed ISOLTRAP installation.