

WG7 Highlights: Future Experiments

CONVENERS.

Alexei Prokudin, Abhay Deshpande, Alice Valkarova

WG7

32 extremely well prepared talks

10 existing and future facilities represented

I greatly appreciate conversations with Abhay Deshpande, Pawel Nadel-Turonski, Ernst Sichtermann, Alice Valkarova during preparation of this summary

WG7: Facilities

BNL: sPHENIX, ePHENIX, eSTAR

KEK: BELLE II

Electron Ion Collider eRHIC(BNL) MEIC(JLAB)

LHC, LHCb, ATLAS, COMPASS, NA62, LHeC, AFTER@LHC, FCC

JLAB: JLAB 12, HALL A,B,C,D

CERN

LHC: ATLAS, LHCb

COMPASS, NA62

LHeC, AFTER@LHC, FCC

LHC

"Europe's top priority should be exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030."

Current luminosity
$$L \sim 10^{33} \; ({\rm cm}^{-2} {\rm s}^{-1}) \; \int L \sim 30 \; ({\rm fb}^{-1})$$

Planned
$$L \sim (1 \div 5) \cdot 10^{34} \; (\mathrm{cm^{-2} s^{-1}})$$

$$\sqrt{s} = 13 \sim 14 \; (\mathrm{TeV})$$

ATLAS Upgrade: Diane CINCA, Julio VIEIRA DE SOUZA

LHCb Upgrade: Tomasz SZUMLAK

ATLAS Upgrades

Study EWSB Mechanism

Probe for signatures of New Physics

Measure rare decay modes

The challenge:

Diane CINCA, Julio VIEIRA DE SOUZA

Higgs-top coupling can be measured to about

LHCb Upgrades

Physics Programme

Tomasz SZUMLAK

- ▶ CP violation
- rare decays
- electroweak physics
- ▶ lepton flavour violation
- charm physics
- production and spectroscopy

Upgrade target

- ☐ full event read-out@40 MHz (flexible approach)
- ☐ completely new front-end electronics needed (on-chip zero-suppression)
- ☐ redesign DAQ system

	Observable	Current	LHCb	Upgrade	Theory
, of the		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
47	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02

KEK: BELLE II

BELLE II

SuperKEKB - major upgrade of the KEKB B factory at KEK (Tsukuba)

Maria ROZANSKA

	Japan FY	2013	2014	2015	2016	
Suj		(B-MR(LER& nstruction	ow here HER)	Sup _ comn	 KEKB sioning	

$$L = 8 \times 10^{35} \, \text{cm}^{-2} \, \text{s}^{-1}$$

$$E(e^{+}) = 4 G_{e}V, E(e^{-}) = 7 G_{e}V$$

Belle II — upgraded Belle detector to accumulate
$$L_{int} \approx 50~{\rm ab}^{-1}$$
 by 2022
$$55~{\rm billion~B\overline{B}~pairs},~47~{\rm billion~}\tau^+\tau^-~{\rm pairs}$$

Complementary to direct searches of NP in energy frontier: Indirect searches of NP in rare decays

COMPASS II

Eva-Maria KABUSS Catarina QUINTANS

$$L \sim 5 \cdot 10^{32} \, (\text{cm}^{-2} \text{s}^{-1})$$

Polarised target

DVCS data taking in 2016/17

Nucleon tomography

COMPASS II

Eva-Maria KABUSS Catarina QUINTANS

The COMPASS Drell-Yan measurement will start in October this year, and continue during the whole 2015 Run.

The goal: nucleon tomography, 3D partonic structure in momentum space. Confirmation of a fundamental QCD prediction of a sign change due to initial-final state interactions

AFTER@LHC

Jean-Philippe Lansberg

Precision proton-proton and proton-nucleus collision studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$
 7 TeV p $\mathscr{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} \text{ y}^{-1}$

Accessing large-x gluons

Hadron center-of-mass system

backward physics = large- x_2 physics

Target rest frame

Important for high-mass BSM particle searches:

$$M^2 \sim x_1 x_2 s$$

LHeC

Emilia CRUZ ALANIZ Christian SCHWANENBERGER Voica Ana Maria RADESCU Guilherme MILHANO Monica D'ONOFRIO Paul NEWMAN Matthew WING

- Lepton-hadron scattering at the TeV centre of mass scale (60 GeV electrons x LHC protons & ions)
- High luminosity:
 10³³ 10³⁴ cm⁻² s⁻¹
- Runs simultaneous with ATLAS / CMS in post-LS3 HL-LHC period

LHeC

Emilia CRUZ ALANIZ Christian SCHWANENBERGER Voica Ana Maria RADESCU Guilherme MILHANO Monica D'ONOFRIO Paul NEWMAN Matthew WING

Varied physics goals require precise measurements throughout kinematically accessible region.

Emilia CRUZ ALANIZ

Paul NEWMAN

Ring-Ring option, feasible but impact LHC operation during installation

Linac-Ring option, the baseline solution exists, will now have to find the best solution

Detector designed to fulfill physics

Strong collaboration with US laboratories

Voica Ana Maria RADESCU

Monica D'ONOFRIO

Impact on gluon distribution precision:

Higgs couplings:

Hbb coupling measurements with 1% statistical precision (1 ab⁻¹)

in 10 years of operation

BNL: RHIC

sPHENIX+fsPHENIX

PHENIX → sPHENIX (2020)

Alexander BAZILEVSKY John LAJOIE

By ~2020

New detector based on BaBar magnet around PHENIX

2021-2022

- Long 200 GeV Au+Au w/ upgraded detectors
- p+p/d+Au at 200 GeV
- Drell-Yan

- Jet, di-jet, y-jet probes of parton transport and energy loss mechanism
- · Color screening for different QQ states

sPHENIX

JEFFERSON LAB

12 GeV Upgrade Project

Highest priority in the 2007 NSAC Long Range Plan.

12 GeV electrons

JLab: 21st Century Science Questions

- What is the role of gluonic excitations in the spectroscopy of light mesons? Can these excitations elucidate the origin of quark confinement?
- Where is the missing spin in the nucleon? Is there a significant contribution from valence quark orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through measurements of new multidimensional distribution functions?
- What is the relation between short-range N-N correlations and the partonic structure of nuclei?
- Can we discover evidence for physics beyond the standard model of particle physics?

JLab: 21st Century Science Questions

- What is the role of gluonic excitations in the spectroscopy of light mesons? Can these excitations elucidate the origin of quark confinement?
- Where is the missing spin in the nucleon? Is there a significant contribution from valence quark orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through measurements of new multidimensional distribution functions?
- What is the relation between short-range N-N correlations and the partonic structure of nuclei?
- Can we discover evidence for physics beyond the standard model of particle physics?

JLAB: GlueX in HALL D

Justin Stevens

The GlueX experiment in Hall D at JLab is designed to search for and study hybrid mesons for which a rich spectrum is predicted by Lattice QCD

* Some have "exotic" J^{PC} which cannot be formed by $q\bar{q}$:

$$J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}...$$

$$\vec{J} = \vec{L} + \vec{S}$$

$$P = (-1)^{L+1}$$

$$C = (-1)^{L+S}$$

Expect first physics data in 2015 and full intensity running in 2017

ELECTRON ION COLLIDER

Broad agreement of nuclear physics community that the next facility should be Electron Ion Collider

high luminosity

$$L \sim 10^{33} \div 10^{34} \, (\text{cm}^{-2} \text{s}^{-1})$$

energy range

$$\sqrt{s} = 20 \div 140 \text{ (GeV)}$$

- polarized, longitudinal and transversed, for the proton, deuterium, He3
- Ion beams up to U or Pb
- wide acceptance detector and good PID

Elke ASCHENAUER, Pawel NADEL-TURONSKI

Physics driven design

EIC White Paper arXiv:1212.1701

Gluon spin

3D tomography of the nucleon

Dynamics of color fields in nuclei

Emergence of hadrons from color charge

... prospects of EW and BSM physics under study

Elke ASCHENAUER
Pawel NADEL-TURONSKI
Alexander KISELEV
Ernst SICHTERMANN
Alexander BAZILEVSKY

J.H. LEE John LAJOIE Thomas BURTON

Physics driven design

Elke ASCHENAUER
Pawel NADEL-TURONSKI
Alexander KISELEV
Ernst SICHTERMANN
Alexander BAZILEVSKY

J.H. LEE John LAJOIE Thomas BURTON

Physics driven design

Elke ASCHENAUER
Pawel NADEL-TURONSKI
Alexander KISELEV
Ernst SICHTERMANN
Alexander BAZILEVSKY

J.H. LEE John LAJOIE Thomas BURTON

eRHIC at BNL

eRHIC: add an electron accelerator to the existing RHIC

Elke ASCHENAUER Alexander BAZILEVSKY Ernst SICHTERMANN Alexander KISELEV

In current design:

Energy:

Electron: 6.6-21.2 GeV

Proton: 25-250 GeV

Ions: 10-100 GeV

√s: up to 145 GeV

Polarization:

Electrons: 80%

Protons and He3: 70%

Luminocity:

 $>10^{33}$ cm⁻² s⁻¹

... Still evolving

ePHENIX

"An Electron Ion Collider Detector built around the BaBar detector"

Alexander BAZILEVSKY

eSTAR

Ernst SICHTERMANN

eSTAR - Concept

~2025

New detector elements

eRHIC at BNL

Alexander KISELEV

Dedicated detector

-4<n<4: Tracking & EM Calorimetry (hermetic coverage) Forward **EMC** Lepton-ID: RICH -3 <η< 3: e/p 1 <|η| < 3: Hcal 3 < |η| < 4: Ecal & Hcal $|\eta|$ < 4: γ suppression via tracking PID: SOLENOID 1<|η|<3: RICH RICH -1<η<1: TPC (dE/dx) Backward 3T field

hadron beam +11

EMC

—n lepton beam

The EIC at JLab

Pawel NADEL-TURONSKI

- 12 GeV CEBAF is a fullenergy lepton injector
 - Parallel running with fixed target possible
- MEIC and CEBAF both have a 1.4 km circumference
- MEIC can store 20-100 GeV protons, or heavy ions up to 40 GeV/A.
- Figure 8 design to preserve polarisation of deuterium

The EIC at JLab

Full-acceptance detector design at JLab

Pawel NADEL-TURONSKI

- 1. Detection/identification of complete final state
- 2. Spectator p_{τ} resolution << Fermi momentum
- 3. Low-Q² electron tagger for photoproduction

EIC Physics

An examples of physics result:

Jianwei QIU **Ernst SICHTERMANN**

Only one year of operation!

No other machine in the world can achieve this!

There is a lot of enthusiasm, cooperation and support in our community towards future facilities

There is a lot of enthusiasm, cooperation and support in our community towards future facilities

Post HERA, prospects of DIS in future are bright

There is a lot of enthusiasm, cooperation and support in our community towards future facilities

Post HERA, prospects of DIS in future are bright

Future facilities complement each other's mission and serve to better understanding of the nature

There is a lot of enthusiasm, cooperation and support in our community towards future facilities

Post HERA, prospects of DIS in future are bright

Future facilities complement each other's mission and serve to better understanding of the nature

Our mission resembles the First New World voyage of Columbus, we have determination, clear goals and a plans. I believe, on this voyage discoveries are awaiting us

THANK YOU!

Spares

NA62 experiment

Prospects for the $K^+ \rightarrow \pi^+ \nu \nu$ Measurement

Carim MASSRI

Sensitive to New Physics

Very difficult experimental measurement

Decay	Events/year
$K^+ \to \pi^+ \nu \nu \nu$ [SM] (flux 4.5×10 ¹²)	45

Future Circular Collider Study - SCOPE

80-100 km tunnel infrastructure in Geneva area – design driven by ppcollider requirements (FCC-hh) with possibility of e+- e- (FCC-ee) and p - e (FCC-he)

LHeC could operate as injector for FCC-ee

LHeC could potentially provide collisions with FCC-hh

 $8 T \Rightarrow 40 \text{ TeV in } 80 \text{ km}$

16 T \Rightarrow 80 TeV in 80 km

20 T \Rightarrow 100 TeV in 80 km

16 T ⇒ 100 TeV in 100 km

