
Planning for distributed workflows: constraint-based

coscheduling of computational jobs and data

placement in distributed environments

Dzmitry Makatun1,3, Jérôme Lauret2, Hana Rudová4 and
Michal Šumbera3

1Faculty of Nuclear Physics and Physical Engineering, Czech Technical University in Prague
2STAR, Brookhaven National Laboratory, USA
3Nuclear Physics Institute, Academy of Sciences, Czech Republic
4Masaryk University, Czech Republic

E-mail: dzmitry.makatun@fjfi.cvut.cz

Abstract. When running data intensive applications on distributed computational resources
long I/O overheads may be observed as access to remotely stored data is performed. Latencies
and bandwidth can become the major limiting factor for the overall computation performance
and can reduce the CPU/WallTime ratio to excessive IO wait. Reusing the knowledge of
our previous research, we propose a constraint programming based planner that schedules
computational jobs and data placements (transfers) in a distributed environment in order
to optimize resource utilization and reduce the overall processing completion time. The
optimization is achieved by ensuring that none of the resources (network links, data storages
and CPUs) are oversaturated at any moment of time and either (a) that the data is pre-placed
at the site where the job runs or (b) that the jobs are scheduled where the data is already
present. Such an approach eliminates the idle CPU cycles occurring when the job is waiting for
the I/O from a remote site and would have wide application in the community. Our planner was
evaluated and simulated based on data extracted from log files of batch and data management
systems of the STAR experiment. The results of evaluation and estimation of performance
improvements are discussed in this paper.

1. Introduction
Previous collaborative work between BNL (Brookhaven National Laboratory) and NPI/ASCR
(Nuclear Physics Institute, Academy of Sciences of the Czech Republic) showed that the global
planning of data transfers within the Grid can outperform widely used heuristics such as Peer-to-
Peer and Fastest link (used in Xrootd)[1, 2]. Those results became the ground for continuation of
research and extension of global planning to the entire data processing workflow, i.e., scheduling
of CPU allocation, data transferring and placement at storage.

Long I/O overheads when accessing data from remote site can significantly reduce the
application’s CPUtime/WallTime ratio [3, 4]. For this reason, when setting up a data production
at remote sites one has to consider the network throughput, available storage and CPU slots.
When there are few remote sites involved in the data processing, the load can be tuned manually
and simple heuristic may work, but, as the number of sites grows and the environment is



constantly changing (site outage, fluctuations of network throughput and CPU availability), an
automated planning of workflows becomes needed.

As an intuitive example of optimization let us consider a situation when a given dataset can
be either processed locally, or can be sent to a remote site. Depending on transfer overhead it
may appear to be optimal to wait for free CPU slots at the local site and process all the data
there, or send a smaller fraction of the dataset for remote processing. Commonly used heuristics
such as “Pull a job when a CPU slot is free” will not provide an optimization with respect to
an overall processing makespan.

Another example arises from a workflow optimization which was done for inclusion of the ANL
(Argonne National Laboratory) computational facility into the Cloud based data production of
the STAR experiment [5]. In this case, and due to the lack of local storage at the site for
buffering, the throughput of a needed direct on-demand network connection between BNL (New
York) and ANL (Illinois) was not sufficient to saturate all the available CPUs at the remote
site. An optimization was achieved by feeding CPUs at ANL from two sources: directly from
BNL and through an intermediate site NERSC (National Energy Research Scientific Computing
Center, California) having large local caching and with better connectivity to ANL. This example
illustrates an efficient use of indirect data transfers which cannot be guessed by simple heuristics.
A general illustration of distributed resources used for data production and their interconnection
is given at Figure 1.

Input data flow
Output data flow 
Links between

CPUs

DISK

REMOTE 1

DISK

REMOTE 2

LOCAL
HPSS CPUs

central
 NFS

DISK

REMOTE N

CPUs

CPUs

remote sites

Figure 1. Schema of data production in the
Cloud.

1 2

3

4

Input source
Output destination
Intermediate node
Processing node
Input transfer
Output transfer

Figure 2. An example of a transfer path.
Illustration for constraints 1-4 in section 2.

Scheduling of computational jobs submitted by users (user analysis) has even more degrees
of possible optimization: selection between multiple data sources, grouping of jobs that use the
same input files. This case becomes even more complex due to a poor predictability of the
user analysis jobs. However, the main question for optimization remains the same as for the
examples above: How to distribute a given set of tasks over the available set of resources in
order to complete all the tasks within minimal time?

Problems of scheduling, planning and optimization are being commonly solved with the help
of Constraint Programming (CP) [6]. It is a form of declarative programming which is widely
used in scheduling, logistics, network planning, vehicle routing, production optimization etc... In
the next sections we will introduce our Constraint Satisfaction Problem (CSP) formulation for
a data production at multiple sites and provide a simulation-based evaluation of the proposed
model.



2. Model formulation, assumptions and search approach
We will introduce only the core concepts of our CSP formulation and search algorithms, omitting
detailed mathematical expressions. The following input parameters are necessary to define our
CSP.

Computational Grid (see Figure 1) is described by directed weighted graph where nodes are
computational sites c with a given number of CPUs cpuc and storage space diskc; edges are
network links l with weight slowdownl which is the time required to transfer a unit of data
(slowdownl = 1

throughputl
). A dedicated storage facility, such as HPSS, can also be modeled

as a node with cpuc = 0.

Set of jobs. Each job j has a durationj , it needs one input file of inputSizej , produces one
output file of outputSizej , input file is placed at inputSourceNodesj and output file must
be transferred to one of outputDestinationNodesj .

Our goal is to create a schedule of jobs at computational sites, transfers over links and a
placement of files at storages for a given computational Grid and a set of jobs. In order to
solve this problem the variables of our model define the resource selection and timing of each
task:

Resource selection variables define a node ProcessingNodej where the job j will be
executed and a transfer path for each file f (either input or output of a job). The transfer
path is described by a set of boolean variables Xfl where true means that a file f will be
transferred over a link l and false means the opposite.

Time variables are: Jsj is a start time of a job j, Tsfl is a start time of a transfer of a file f
over a link l, Fsfc is a start time of a placement of a file f at a node c, Fdurfc is a duration
of a placement of a file f at a node c.

In our model we assume that a network link can be modeled as an unary resource with no loss
of generality. The measurements in [1] have shown, that a sequential transfer of a set of files
does not require more time than a parallel transfer of the same set of files over the same link.

We use an incomplete search which can provide a suboptimal solution of required quality
within a given time limit because the final goal is to create a planner that can process requests
online. For a better search performance the overall problem is divided into two subproblems
and the search is performed in two stages:

(i) Planning Stage: instantiate a part of variables in order to assign resources for each task.

(a) Assign jobs to computational nodes.
(b) Select transfer paths for input and output files.
(c) Estimate a makespan for a given resource assignment estMakespan.
(d) Find a solution for the subproblem with a minimal estimated makespan.

(ii) Scheduling stage: define a start time for each operation.

(a) Define the order of operations.
(b) Put cumulative constraints on resources in order to avoid their oversaturation at any

moment of time.
(c) Find a solution with a minimal makespan which is the end time of the last task.

At the planning stage we have to assign a transfer path for an input and an output file of
each job which can be defined by the following constraints (see Figure 2):

1. An input file has to be transferred from one of its sources over exactly one link.

2. An output file has to be transferred to one of its destinations over exactly one link.

3. An intermediate node (neither source, destination nor selected for the job execution) either
has exactly one incoming and outgoing transfer or is not on a transfer path:
∃ incoming transfer ⇔ ∃ outgoing transfer.



Table 1. Variables and parameters used in cumulative constrains on resources.

Task Start Duration Usage Limit

Job Jsjc durationj 1 cpuc
Transfer Tsfl sizef · slowdownl 1 1
File placement Fsfc Fdurfc sizef diskc

4. There must exist exactly one incoming transfer of an input file and exactly one outgoing
transfer of an output file at the node which was selected for the job execution.

5. A file can be transferred from/to each node at most once.

In addition, we use constraints for loop elimination similarly as it is described in [7].
At the scheduling stage the problem is to assign a start time for each task. The following

constraints on order of tasks are implemented:

• An outgoing transfer of a file from a node can start only after an incoming transfer to that
node is finished. The first transfer of an input file from its source and the first transfer of
an output file from the processing node are exceptions from this constraint.

• A job can start only after the input file is transferred to the selected processing node.

• An output file can be transferred only after the job is finished.

• A reservation of space for a file at a node is made when a transfer to that node starts.

• A file can be deleted from the start node of a link after the transfer is finished.

• A reservation of space for an output file is made at the processing node when the job starts.

• An input file can be deleted from a processing node after the job is finished.

Cumulative constraints are widely used in Constraint Programming for description of resource
usage by tasks. Each cumulative constraint requires that a set of tasks given by start times,
durations and resource usage, never require more than a resource limit at any time. In our case
we use three sets of cumulative constraints: for CPUs, storages and links (see Table 1).

3. Simulations
The constraint satisfaction problem was implemented using MiniZinc [8] and Gecode [9] was
used as a solver. The timelimit was set to 3 minutes for both planning and scheduling stages.
The simulations were running under Windows 8 64-bit on a computer with Intel i5 (4 cores)
2.50 GHz processor and 6 GB of memory installed. The Gecode solver was running in a parallel
mode using 4 threads.

The simulated environment consisted of 3 nodes: a central storage HPSS (cpuHPSS = 0)
which was the single source for input files and the single destination for output files, a local
processing site and a remote processing site. The slowdown of links between the central HPSS
and the local site was set to 0, which means that transfer overheads to/from the local site are
negligible comparing to a job duration. The slowdown of the links to/from the remote site was
increasing in each simulation proportionally to a slowdown factor. The parameters of jobs were
taken from logging system of the STAR experiment’s data production at computational site
KISTI (Korea Institute of Science and Technology Information) [10]. The average job duration
was 3,000 minutes and average time of transfer was 5 and 10 minutes to/from the remote site
respectively (in the simulations where the slowdown factor = 1). Then, in further simulations
the transfer times increase proportionally to the slowdown factor. In the simulated environment



80% of CPUs were available at the local site and 20% at the remote site. 2,000 of jobs were
scheduled stepwise by subsets (chunks) of 200. Storage constraints were not considered in these
simulations. Four different scheduling strategies were compared:

Local: All the jobs are submitted to the local site only. This strategy was used as a base line
for comparison against other strategies.

Equal CPU load: Jobs are distributed between nodes with the goal to maintain an equal ratio
of job duration per CPU. Each input file is transferred prior to the start of a job. At each
node jobs are executed in input order.

Data transferred by job: Each CPU pulls a job from the queue when it is idle, then it has
to wait for an input transfer before the job execution starts.

Optimized: This strategy is based on the model proposed in this paper.

1 10 100
-10%

-5%

0%

5%

10%

15%

20%

25%

Equal CPU load

Data transferred by job

Optimized

slowdown factor

m
ak

es
p

an
 im

p
ro

ve
m

en
t 

Figure 3. Results of simulations for real data production. Three strategies were evaluated and
compared to a ideal local production. The optimized solution (our model) clearly provides the
highest gain.

The plot at Figure 3 shows the gain in a makespan delivered by different scheduling policies
compared to the job execution at the local site only. The curves shows the performance of the
scheduling policies when an overhead of transfer to the remote site increases proportionally to the
slowdown factor. When the transfer overhead becomes significant both heuristics (“Equal CPU
load” and “Data transferred by job”) fail to provide an efficient usage of the remote resources
(the makespan improvement goes below zero). Negative makespan improvement means that, in
this case, it would be faster to process all the data locally than to distribute it between several
sites relying on the heuristic. The proposed global planning approach (Optimized) systematically
provides a smaller makespan and adapts to the increase of transfer overheads better then the
other simulated heuristics. It was able to provide a positive gain in makespan by using remote
resources even when the transfer overhead is comparable to a job duration.



4. Conclusion
A model for scheduling of data production over Grid was formulated in form of constraint
satisfaction problem and solved using constraint programming. The simulations based on data
extracted from log files of batch and data management systems of the STAR experiment has
shown that the proposed global planning approach systematically provides a smaller makespan
and adapts to the increase of transfer overheads better then the other simulated heuristics. The
proposed approach can provide an optimization and an automatic adaptation to fluctuating
resources with no need for manual adjustment of a workflow at each site or tuning of heuristics.
The future development of global planning for data processing in Grid is ongoing. In future we
plan to test this approach on problems of larger size (more nodes, CPU’s and links) and improve
the search performance in order to enable online scheduling in real environment.

Acknowledgments
This work has been supported by the Czech Science Foundation (GA-CR) and the Office of
Nuclear Physics within the U.S. Department of Energys. We would like to acknowledge and
thank Brookhaven National Laboratory for resources that they made available.

References
[1] Zerola M, Lauret J, Barták R and Šumbera M 2012 One click dataset transfer: toward efficient coupling of

distributed storage resources and CPUs J. Phys.: Conf. Series 368 012022
[2] Makatun D, Lauret J and Šumbera M 2014 Study of cache performance in distributed environment for data

processing, J. Phys.: Conf. Series 523 012016
[3] Horký J, Lokaj́ıček M and Peisar J 2013 Influence of Distributing a Tier-2 Data Storage on Physics Analysis

(Beijing: 15th Int. Workshop on Advanced Computing and Analysis Techniques in Phys. Res.)
[4] Betev L, Gheata A, Gheata M, Grigoras C and Hristov P 2014 Performance optimisations for distributed

analysis in ALICE J. Phys.: Conf. Series 523 012014
[5] Balewski J, Lauret J, Olson D, Sakrejda I, Arkhipkin D, Bresnahan J, Keahey K, Porter J et al. 2012 Offloading

peak processing to virtual farm by STAR experiment at RHIC J. Phys.: Conf. Series 368 012011
[6] Rossi F, Beek P and Walsh T 2006 Handbook of Constraint Programming (Amsterdam: Elsevier)
[7] Troubil P and Rudová H 2011 Integer Linear Programming Models for Media Streams Planning. (Int. Conf.

on Applied Operational Res.) Lecture Notes in Management Sc. 3 509-22
[8] Nethercote N, Stuckey P, Becket R, Brand S, Duck G and Tack G 2007 MiniZinc: Towards a Standard CP

Modelling Language Lecture Notes in Comp. Sc. 4741 529-543
[9] Tack G 2008 Gecode: an Open Constraint Solving Library (Paris: OSSICP08 Workshop at CP-AI-OR08)
[10] Korea Institute of Science and Technology Information (KISTI) http://en.kisti.re.kr/


