The Structure and Signals of Neutron Stars, from Birth to Death GGI, Florence, 24-28 March 2014

Properties of localized protons in neutron star matter at finite temperatures

Adam Szmagliński, Sebastian Kubis, Włodzimierz Wójcik Institute of Physics, Cracow University of Technology

Realistic Nuclear Models:

- 1. Skyrme (SI', SII', SIII', SL, Ska, SKM, SGII, RATP, T6)
- 2. Myers-Świątecki (MS)
- 3. Friedman-Pandharipande-Ravenhall (FPR)
- 4. UV14+TNI (UV)
- 5. AV14+UVII (AV)
- 6. UV14+UVII (UVU)
- 7. A18
- 8. A18+δv
- 9. A18+UIX
- 10. A18+δv+UIX*

Symmetry Energy of Nuclear Matter

$$E(n,x) = E\left(n,\frac{1}{2}\right) + E_s(n)(2x-1)^2 \qquad x = n_P / n$$
$$E_s(n) = \frac{1}{8} \frac{\partial^2 E(n,x)}{\partial x^2} \Big|_{x=\frac{1}{2}}$$

Small values of the symmetry energy:

- 1. Low proton concentration
- 2. Charge separation instability
 - realized eg. through proton localization

Model of Proton Impurities in Neutron Star Matter (M. Kutschera, W. Wójcik)

We divide the system into spherical Wigner-Seitz cells, each of them enclosing a single proton:

The volume of the cell: $V = \frac{1}{n_P}$

The energy of the cell of uniform phase: $E_0 = V \varepsilon(n_N, n_P)$ $\varepsilon(n_N, n_P) \approx \varepsilon(n_N) + \mu_P(n_N)n_P$ $E_0 = \mu_P(n_N) + V\varepsilon(n_N)$

$$\Psi_{P}(r) = \left(\frac{2}{3}\pi R_{P}^{2}\right)^{-\frac{3}{4}} \exp\left(-\frac{3}{4}\frac{r^{2}}{R_{P}^{2}}\right)$$

$$E_L = \int_V \left\{ \Psi_P^* \left(r \right) \left[-\frac{\nabla^2}{2m_P} + \mu_P \left(n(r) \right) \right] \Psi_P \left(r \right) + \varepsilon \left(n(r) \right) + B_N \left(\vec{\nabla} n(r) \right)^2 \right\} d^3 r$$

$$\Delta E = E_L - E_0 = \frac{9}{8m_P R_P^2} +$$

$$+4\pi\int_{0}^{\infty}r^{2}\left\{p(r)(\mu_{P}(n(r))-\mu_{P}(n_{N}))+\varepsilon(n(r))-\varepsilon(n_{N})+B_{N}\left(\frac{dn(r)}{dr}\right)^{2}\right\}dr$$

where $p(r) \equiv \Psi_P^*(r) \Psi_P(r)$

The self-consistent variational method

We look for such functions $\Psi(r)$ and n(r), that minimize functional:

$$f[n(r), \Psi_{P}(r)] = \Delta E - \lambda \int_{V} [n(r) - n_{N}] d^{3}r - E \left[\int_{V} \Psi_{P}^{*}(r) \Psi_{P}(r) d^{3}r - 1 \right]$$

 λ, E - Lagrange multipliers

boundary conditions:

$$\int_{V} [n(r) - n_{N}] d^{3}r = 0 \qquad \int_{V} \Psi_{P}^{*}(r) \Psi_{P}(r) d^{3}r - 1 = 0$$

By differentiation with respect to $\Psi_P^*(r)$ and n(r) we obtain following Euler-Lagrange equations:

$$-\frac{1}{2m_P}\nabla^2\Psi_P(r) + \left[\mu_P(n(r)) - \mu_P(n_N)\right]\Psi_P(r) = E_P\Psi_P(r)$$

$$\frac{\partial \mu_P(n(r))}{\partial n(r)} \Psi_P^*(r) \Psi_P(r) + \mu_N(n(r)) - 2B_N r \left(\frac{d^2 n(r)}{dr^2}r + 2\frac{dn(r)}{dr}\right) - \lambda = 0$$

$$r \rightarrow \infty \Longrightarrow \lambda = \mu_N(n_N)$$
 R_P - variational parameter

Potential	n _{loc}	R_P^{loc}
MS	1.033	0.906
SI'	0.351	1.570
SII'	0.361	1.688
SIII'	0.337	1.552
SL	0.964	1.384
Ska	1.016	0.804
SKM	0.979	1.330
FPR	0.721	1.262
UV14+TNI	0.731	1.209
AV14+UVII	0.789	0.971
UV14+UVII	0.766	0.913
A18	1.493	1.136
A18+δv	1.627	0.915
A18+UIX	0.645	0.911
A18+δv+UIX*	0.819	0.878

Properties of nuclear matter at T>0

We minimize the free energy difference

$$F = E - T((1 - x)S_N + xS_P)$$

Kinetic energy density

$$\tau_{N,P} = \frac{2}{(2\pi)^2} \left(2m_{N,P}^* T \right)^{5/2} J_{3/2}(\eta_{N,P})$$

Where the entropy per baryon

$$S_{N,P} = \frac{5}{3} \frac{1}{n_{N,P}} \frac{1}{(2\pi)^2} \left(2m_{N,P}^*T\right)^{3/2} J_{3/2}(\eta_{N,P}) - \frac{1}{2}\eta_{N,P}$$

The unknown quantity $\eta_{N,P}$ comes from:

$$n_{N,P} = \frac{2}{(2\pi)^2} \left(2m_{N,P}^* \right)^{3/2} J_{1/2}(\eta_{N,P})$$

Fermi integrals are defined

$$J_{\nu}(\eta) = \int_{0}^{\infty} dx \frac{x^{\nu}}{1 + e^{x - \eta}}$$

1/

 ∞

Nucleon chemical potentials are the derivatives of the free energy density ∂f

$$u_{N,P} = \frac{\partial J}{\partial n_{N,P}}$$

Conclusions

- 1. Symmetry energy implies the inhomogeneity of dense nuclear matter in neutron stars.
- 2. Proposal of self-consistent variational method neutron background profile as a solution of variational equation with parameter (mean square radius of proton wave function).
- 3. Localization of protons as an universal state of dense nuclear matter in neutron stars.
- 4. Nonzero temperature lowers the localization threshold density and diminishing the size of the proton wave function.
- 5. Localization is still present at very high temperature.

References:

- [1] M. Kutschera, Phys. Lett. **B340**, 1 (1994).
- [2] M. Kutschera, W. Wójcik, Phys. Lett. **B223**, 11 (1989).
- [3] M. Kutschera, W. Wójcik, Phys. Rev. C47, 1077 (1993).
- [4] M. Kutschera, S. Stachniewicz, A. Szmagliński, W. Wójcik, Acta Phys. Pol. **B33**, 743 (2002).
- [5] A. Szmagliński, W. Wójcik, M. Kutschera, Acta Phys. Pol. B37, 277 (2006).
- [6] M. Kutschera, W. Wójcik, Acta Phys. Pol. B23, 947 (1992).
 [7] M. Kutschera, MNRAS 307(4), 784 (1999).
- [8] A. Szmagliński, S. Kubis, W. Wójcik, Acta Phys. Pol. **B45**, 249 (2014).