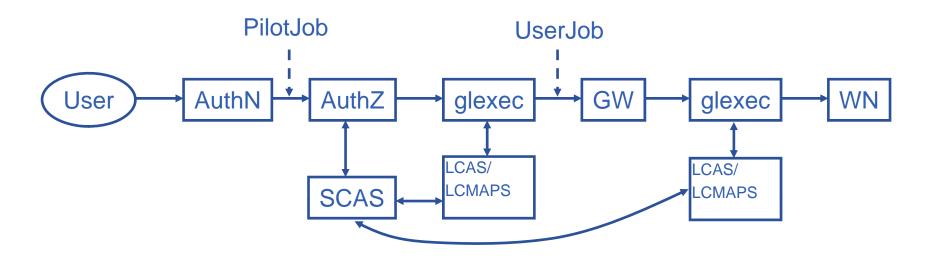


Policy Obligations -Bridging two fundamental security concepts

JRA1 All-Hands, NIKHEF, 20-22 February 2008

Yuri Demchenko SNE Group, University of Amsterdam

www.eu-egee.org www.glite.org


INFSO-RI-508833

CGCC Obligations for Interoperability in Grid Enabling Grids for E-sciencE

- Part of the site centric SCAS based AuthZ infrastructure
- One of the main focuses of the AUTHZ-INTEROP initiative between OSG-EGEE-GT
 - List of Obligations and their semantics
 - SAML-XACML Extension Library for OpenSAML2.0
- Other components
 - Obligations Handling Reference Model (OHRM)
 - Obligation Handler API and SAML-XACML design document
 to be finalised
 - XACML Conformance test for typical and registered Obligations
 still to be done
- Another outcome
 - IMHO, indicated a need for Grid security architecture and model re-thinking

Obligations and Pilot job use cases

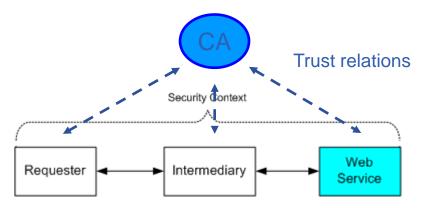
Enabling Grids for E-sciencE

- Introducing SCAS as external AuthZ service called from protected environment changes simple security model
 - AuthN-AuthZ-glexec flow needs analysis
 - Behind each (SCAS) policy should be clear operational model
- SCAS is verified to be compatible with the XACML policy and PDP
 - XACML uses pluggable security service model (i.e. called from major Service)
 - glexec is a kind of gateway/border device

egee

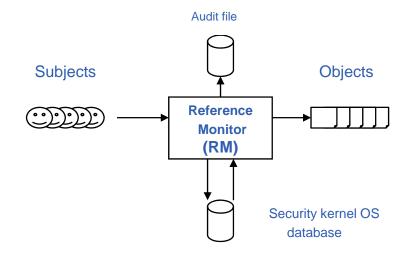
Obligations in Access Control and Management

- Enabling Grids for E-sciencE
- Access control in Grid and Policy Obligations
 - Account mapping
 - Quota assignment
 - Environment setup/configuration
- General Complex Resource provisioning
 - Fixed, Time-flexible, Malleable/"Elastic" Scheduling
 - Usable Resource
- Other/general
 - Accounting, Logging, Delegation
- Obligations in access control and policy based management
 - Obligated policy decision
 - Provisional policy decision



OSI-Security vs TCB Security

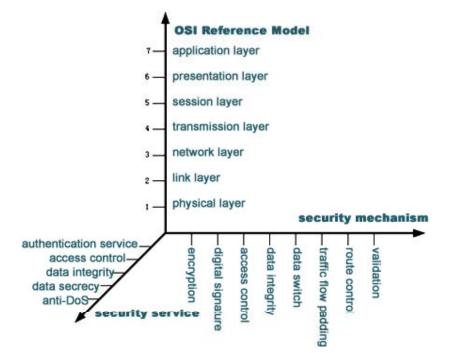
Enabling Grids for E-sciencE


Open Systems and Internet

- Open Systems Interconnection (OSI) Security Architecture
 - ISO7498-2/X.800
- Independently managed interconnected system
- Trust established mutually or via 3rd party
- PKI and PKI based AuthN and key exchange
- Concept of the Security Context

Trusted Computing Base (TCB)

- Reference Monitor (RM) by J.P.Anderson "Computer Security Planning Study" (1972)
- Models Bell-LaPadula and Biba
- Certification criteria TCSEC/Common Criteria (1984)
 - A1, B1, B2, B3, C1, C2, D

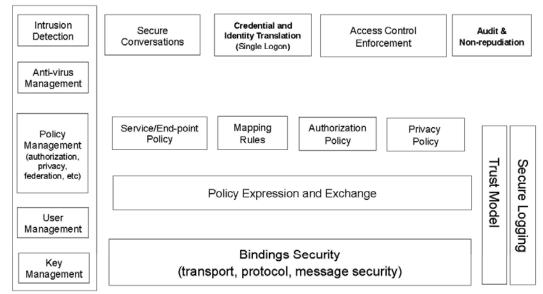


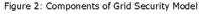
X.800/OSI Security – Layers vs Services vs Mechanisms

Mechanism ->	Encipherm	Digital	Access	Data integrity	Authenticatio		Routing	Notarization
Service	ent	signature	control		n exchange	padding	control	
Authentication, Peer entity	Y	Y			Y			
Authentication, Data origin	Y	Y						
Access control service	Y		Y					
Connection confidentiality	Y						Y	
Connectionless confidentiality	Y						Y	
Selective field confidentiality	Y							
Traffic flow confidentiality	Y					Y	Y	
Connection Integrity with recovery	Ŷ			Y				
Connection integrity without recovery	Y			Y				
Selective field connection integrity	Y			Y				
Connectionless integrity	Y	Y		Y				
Selective field connectionless integrity	Y	Y		Y				
Non-repudiation. Origin		Y	642	Y				Y
Non-repudiation. Delivery		Y		Y				Y

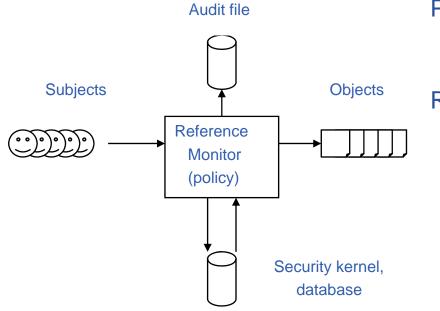
eGee

Service	Layer									
	1	2	3	4	5	6	7*			
Peer entity authentication			Y	Y			Y			
Data origin authentication			Y	Y			Y			
Access control service			Y	Y			Y			
Connection confidentiality	Y	Y	Y	Y		Y	Y			
Connectionless confidentiality		Y	Y	Y		Y	Y			
Selective field confidentiality						Y	Y			
Traffic flow confidentiality	Y		Y				Y			
Connection Integrity with recovery				Y			Y			
Connection integrity without recovery			Y	Y			Y			
Selective field connection integrity							Y			
Connectionless integrity			Y	Y			Y			
Selective field connectionless integrity							Y			
Non-repudiation Origin							Y			
Non-repudiation. Delivery							Y			




- Similar model should be probably proposed for WS SOAP based security services and mechanisms
- Layers model for above Application layer are uncertain

From OSI/Internet to SOA/WSA Enabling Grids for E-science Security Model


- X.800 Security Architecture for Open Systems Interconnection for CCITT applications. ITU-T (CCITT) Recommendation, 1991
 - ISO 7498-2:1989 Information processing systems -- Open Systems
 Interconnection -- Basic Reference Model -- Part 2: Security Architecture
- Web Services Security Roadmap (2002)
 - http://www.ibm.com/developerworks/library/specification/ws-secmap/
- OGSA Security Model Components (2002-2006)
 - GFD.80 OGSA version 1.5, Section 3.7 Security Services
 - Re-states Web Services Security roadmap
- WS-Security stds specify using SOAP header for security related issues
 - Considered as orthogonal to major service

Reference Monitor (RM) Concept

Proposed by J.P. Anderson in the report "Computer Security Planning Study" (1972)

RM property provides a basis for Multi-Level Security (MLS)

- Complete mediation: The security rules are enforced on every access, not just, for example, when a file is opened.
- Isolation: The reference monitor and databases must be protected from unauthorized modification.
- Verifiability: The reference monitor's correctness must be provable. That is, it must be possible to *demonstrate mathematically* that the reference monitor enforces the security rules and provides complete mediation and isolation.
- RM concept is a basis for TCB certification

ege

- Bell–LaPadula (BLP) model
 - No write down
 - No read up
- Focus Confidentiality
 - Mandatory Access Control
- Applicability Data
- Known flaw not protected against insider "worm" virus

- Biba model
 - No write up
 - No read down
- Focus Integrity
- Applicability (Open) Data and Control/Mngnt

- TCSEC Common Criteria
 - A1 B3 + formally/mathematically verified design
 - B1-B3 Multilevel security, Formal security model, Mandatory AC
 - C1-C2 Discretionary access control model, auditable user activity
 - D minimal protection
 - Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)

TCSEC/ISO Common Criteria

Enabling Grids for E-sciencE

- **TCSEC Certification Criteria**
 - A1 B3 + formally/mathematically verified design
 - B3 Clear security model and layered design, Security functions tamperproof, Auditing mandatory
 - B2 Least-privilege access control model, Certifiable security design implementation, *Covert channels analysis*
 - B1 Labelled security protection, MAC-BLP + DAC
 - C2 Discretionary access control model, auditable user activity
 - D minimal protection
- Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)
 - EAL1: Functionally Tested
 - EAL2: Structurally Tested
 - EAL3: Methodically Tested and Checked
 - EAL4: Methodically Designed, Tested and Reviewed
 - EAL5: Semiformally Designed and Tested
 - EAL6: Semiformally Verified Design and Tested
 - EAL7: Formally Verified Design and Tested
- EAL1-4 commercial systems, EAL5-7 special systems (EAL4 circa C2)
 - Windows NT (EAL4+) and many routing and Unix systems certified for EAL4

egee

Clark – Wilson Integrity Policy

Enabling Grids for E-sciencE

Criteria for achieving data integrity (primary target for reliable business operation)

- Authentication of all user accessing system
- Audit all modifications should be logged
- Well-formed transactions
- Separation of duties

Enforcement Rules

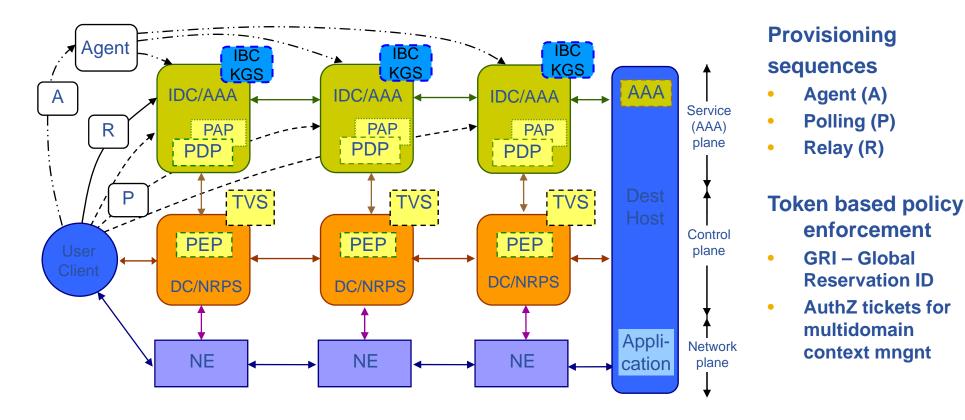
- E1 (Enforcement of Validity) Only certified TPs can operate on CDIs
- **E2 (Enforcement of Separation of Duty)** Users must only access CDIs through TPs for which they are authorized.
- E3 (User Identity) The system must authenticate the identity of each user attempting to execute a TP
- E4 (Initiation) Only administrator can specify TP authorizations

Certification Rules

- **C1 (IVP Certification)** The system will have an IVP for validating the integrity of any CDI.
- **C2 (Validity)** The application of a TP to any CDI must maintain the integrity of that CDI. CDIs must be certified to ensure that they result in a valid CDI
- **C3** A CDI can only be changed by a TP. TPs must be certified to ensure they implement the principles of separation of duties & least privilege
- **C4 (Journal Certification)** TPs must be certified to ensure that their actions are logged **C5** TPs which act on UDIs must be certified to ensure that they result in a valid CDI
- TP transformational procedure; IVP integrity verification procedure; CDI – constrained data Item; UDI - unconstrained data Item

- Strong&consistent AthN is a good principle, BUT
 - Can be considered as sufficient only if a subject logs in the trusted environment (like server/UNIX)
 - There other security aspects
- Use TCB (Secure OS) design principles
 - Layered design
 - Hardware, kernel, OS, user
 - Most sensitive operations in the (resource) innermost circle
- Introduce security zones model
 - AuthN, (Delegation,) AuthZ, (AuthZ Session,) glexec/Unix
 - Keep security context
 - Use AuthZ session management concept and security mechanisms

- Virtualisation
- Trusted Computing Platform Architecture (TCPA)



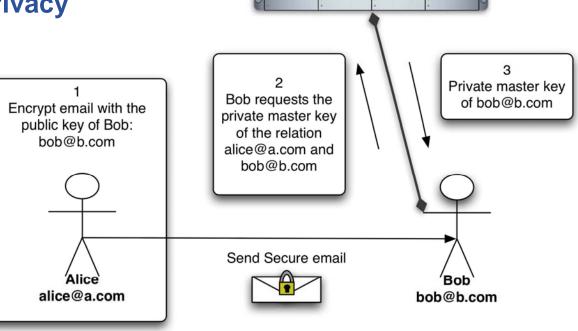
Identity Based Cryptography (IBC)

- Uses publicly known remote entity's identity as a public key to send encrypted message or initiate security session
 - Initially proposed by Shamir in 1984 as an alternative to PKI
 - Shamir is one of the RSA inventors in 1977 (Rivest, Shamir, Adleman)
 - Identity can be email, domain name, IP address
 - Allows conditional private key generation
- Requires infrastructure different from PKI but domain based (doesn't require trusted 3rd party outside of domain)
 - Private key generation service (KGS)
 - Generates private key to registered/authenticated users/entities
 - Exchange inter-domain trust management problem to intradomain trust

Using IBC for key distribution in Enabling Grids for E-sciencE multidomain NRP

NRPS – Network Resource Provisioning System DC – Domain Controller IDC – Interdomain Controller

GGGGG


AAA – AuthN, AuthZ, Accounting Server PDP – Policy Decision Point PEP – Policy Enforcement Point TVS – Token Validation Service KGS – Key Generation Service

INFSO-RI-508833

Available implementations

- Voltage Identity-Based Encryption (C based)
 - Used in Microsoft Exchange Server
- Eyebee by Univ Ireland (Java)
 - Tested by us and will be implemented in IDC
- Strong motivation for privacy concerned applications
 - E.g. patient-doctor communication

Key Server

Discussion and Future

- Enabling Grids for E-sciencE
- It was fun working for EGEE
- New security area with lot of unsolved problems
 - Some of them are becoming visible
- Hope to meet you in other projects and at different meetings
 - Will be interested in future offers for partnership in research and projects
- Our research at SNEG/UvA will continue in the area of multidomain Complex Resource Provisioning (Grid enabled)
 - AuthZ and Security
 - Research on the Grid security model(s)

• I believe this photo will become historical :-)

