Technology
Department

ELENA Project Review

Power Converters John Baillie TE/EPC/MPC

15 ${ }^{\text {th }}$ October 2013

Overview of Power Converters for ELENA

Around 400kVA Installed Power All power derived from 400V Network

Ring: 26 Magnetic Circuits
Electron Cooler: 11 Circuits
Transfer Lines: 12 Magnetic Circuits 184 Electrostatic Circuits

Total: 233 Circuits

19 Racks
10 Racks Ring and Magnetic Transfer line Converters
3 Racks Electron Cooler
1 Rack Control
3 Racks Spare Main Dipole Converter
2 Rack Various Spares

400V Supply Transformers (EN/EL)

Cycling Magnetic Circuits

- Magnetic Elements in the ring will follow a varying current or field reference.
- Uncertainty of 500ppm, referred to instantaneous requested current/field, must be respected at all energy levels
- All circuits require relatively small voltages at lowest energy level

Expected duration up to 30s
Maximum ramp time of 1 s has been assumed for dimensioning of ring power converters

Technology

 Department| $\stackrel{\stackrel{\text { O}}{2}}{\stackrel{\rightharpoonup}{2}}$ | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bending PXMBHEKCWP | 1 | 7 | 337 | 238 | 326 | 44.662 | 188 | AUXPS_Type 2 50ppm | 450 | 400 | 30 | 6.72×10^{-4} |
| Quadrupole PXMQNLGNAP | 3 | 4 | 479 | 146 | 37 | 5.100 | 23.1 | CANCUN_50 100ppm | 30 | 50 | 5 | 9.86×10^{-4} |
| Sextupole PXMXNADNAP | 2 | 2 | 187 | 10 | 21 | 2.900 | 4.1 | CANCUN_50 100ppm | 30 | 50 | 5 | 1.74×10^{-3} |
| H/V Corrector PXMCCAYWAP | 16 | 1 | 100 | 4 | 40 | 5.500 | 4.2 | CANCUN_50 100ppm | 30 | 50 | 5 | 9.12×10^{-4} |
| Skew Quadrupole PXMXNADNAP | 2 | 1 | 100 | 0.013 | 33 | 4.500 | 3.7 | CANCUN_50 100ppm | 30 | 50 | 5 | 1.11×10^{-4} |
| Comp. Solenoid PXMLNAFNAC | 2 | 1 | TBD | TBD | TBD | TBD | TBD | CANCUN_50
 100ppm | 30 | 50 | 5 | TBD |

Notes: Total circuit impedances include cables which have been estimated based on conductor material, length and cross section $<2 \mathrm{~A} / \mathrm{mm}^{2}$. Minimum current assumes $0.137 \times$ max flat-top current.

TE

Technology Department

Cycling Magnetic Circuits: V/I Waveforms

Main Dipoles

Main Quadrupoles

Sextupole

Skew Quadrupole

- Compensation Solenoid Awaiting magnet parameters
- All converters are 4 quadrant. Can provide negative voltage if necessary and have no problem operating near 0 V which is a strong requirement for these circuits.
- Degaussing waveforms is possible for all magnets

IE

Technology Department

Dynamic Performance using Function Generator Controller

Looking at the transition between first and second plateaux for the main dipole:

Table of points

PPPL Function

$\begin{array}{lllllllll}3.0075 & 3.0100 & 3.0125 & 3.0150 & 3.0175 & 3.0200 & 3.0225 & 3.0250 & 3.0275\end{array}$

Technology

 Department
Transfer Line: Overview of Magnetic Circuits

		ㄷ 0										ןesıəләу Kч!леןОd
Bending PXMBHCBCWP	1	2	108	68	285	30.8	$\begin{aligned} & 2 \times \text { COBALT } \\ & \text { 1000ppm } \end{aligned}$	50	400	400	1.4×10^{-3}	NO
Quadrupole PXMQNLGNAP	3	1	177	36	37	6.5	$\begin{aligned} & \text { CANCUN_50 } \\ & \text { 100ppm } \end{aligned}$	30	50	5	1.35×10^{-4}	YES
Quadrupole PXMQNAFNWP	1	1	65	3	200	12.9	COBALT 1000ppm	30	200	5	1.00×10^{-3}	NO
H/V Corrector PXMCCAYWAP	6	1	107	4	40	4.3	$\begin{aligned} & \text { CANCUN_50 } \\ & \text { 100ppm } \end{aligned}$	30	50	5	1.25×10^{-4}	YES
Septum	1	1	9	0.42	950	9.1	Commercial	15	1200	TBD	TBD	No

- Possible to ramp all magnets to full current. Bending magnet is limited to approximately 1.5 s

TE

Technology Department

Rep.	Function	Oper.	Oper.	Quantity	Model	Input Voltage	Output Voltage / V	Output	Quadrants	Control
		Voltage	Current			/ V		Current / A		
		/ V	/ A							
1	Cathode	-350	-0.001	1	Commercial	230	-500	-0.001	1	FGC3 / PLC
2	Grid	± 120	± 0.001	1	Commercial	230	± 500	± 0.001	2	FGC3 / PLC
3	Repeller	-300	-0.001	1	Commercial	230	-500	-0.02	1	FGC3 / PLC
4	Collector	-250	-0.01	1	Commercial	230	-500	0.02	1	FGC3 / PLC
5	Filament	16	12	1	Commercial	230	35	24	1	FGC3 / PLC
6	Expansion	18.8	152	1	CERN COBALT	400	50	200	1	FGC3
	Solenoid									
7	Gun/Collector	1.4	45	1	CERN COBALT	400	50	200	1	FGC3
	Solenoid									
8	Drift Solenoid	3.15	45	1	CERN COBALT	400	50	200	1	FGC3
9	Toroïd	TBD	TBD	1	CERN COBALT	400	50	200	1	FGC3
10	Electron Beam		10	10	CERN	400	75	20	4	FGC3
	steerer				CANCUN 20					
11	Field correction coil		10	4	CERN	400	75	20	4	FGC3
					CANCUN 20					

IE

Technology

Department

Bending and Quadrupole elements are powered using two back-to-back unipolar power supplies, polarity reversal is only possible with the addition of a polarity switch

Electrodes are always powered with a positive and negative power supply: Neither electrode is at ground potential

Technology
Department

H/V Correctors powered using two back-to-back biploar power supplies; polarity reversal is inherently possible.

TE

Technology

Department

- 197 elements and 184 circuits; some elements will be powered in parallel from the same power converter.
- Differential Voltage range of 250 V to 70 kV . Achievable using commercial HV Cassette type power supplies.
- Controlled using a PLC

Element Type	Number of Circuits
Matching Quadrupole	74
Bending	12
Defocusing Quad	8
Focusing Quad	7
Corrector	82
	Total

Setting Resolution	1×10^{-4}
Residual Ripple	$<1 \times 10^{-4} \mathrm{pk}-\mathrm{pk}+50 \mathrm{mV}$ pk-pk
Stability (8h constant conditions)	$<1 \times 10^{-4}$

Zone	Number of Circuits	Number of Polarity Reversal Units	Number of Racks
LNE00	18	8	1
LNE01	28	0	2
LNE02	18	0	1
LNE03	13	0	<1
LNE04	12	0	<1
LNE05	13	0	1
LNE06	24	0	2
LNE07	27	0	2
LNE50	17	0	1
LNS	8	8	<1
LNI	6	4	<1
Totals	184	20	13

Justification for using B193_R-407:

- 2 pairs of $400 \mathrm{~mm}^{2}$ cables available.
- Main Dipole (326A)
- TL Dipole (285A)
- EN/EL have final say
- False floor would need to be constructed in B195
- Close to 400V distribution transformers

19 Racks
10 Racks Ring and Magnetic Transfer line Converters
3 Racks Electron Cooler
1 Rack Control
3 Racks Spare Main Dipole Converter
2 Rack Various Spares

IE

Technology
Department

B193_R-407

TE
 Technology Department

B193_R-407 Electrical Requirements: AC Side

Cabinet	Application	Number of Racks	Number of DC Outputs	Models	Required Phases	Input Voltage / V	Input Current Full Load/ A	Power Full Load/ VA
A	Operation	1	2	$3 \times$ COBALT	$3 P N+E$	400	60	41569
B	Operation	1	6	$6 \times$ CANCUN_50	$3 P N+E$	400	17	11432
C	Operation	3	1	$1 \times$ CERN_AuxPS_Type2	$3 \mathrm{P}+\mathrm{E}$	400	286	198000
D	Operation	1	6	$6 \times$ CANCUN_50	$3 P N+E$	400	17	11432
E	Operation	1	6	$6 \times$ CANCUN_50	$3 P N+E$	400	17	11432
F	Operation	1	6	$6 \times$ CANCUN_50	$3 P N+E$	400	17	11432
G	Operation	1	5	$6 \times$ CANCUN_50	$3 P N+E$	400	14	9526
H	Operation	1	5	$6 \times$ CANCUN_50	$3 P N+E$	400	14	9526
1	Operation	1	5	$5 \times$ HCE 35-650	$3 P N+E$	400	9	6163
J	Operation	1	3	$3 \times$ COBALT	$3 P N+E$	400	60	41569
K	Operation	1	3	$1 \times$ COBALT, 2x CANCUN 30	$3 P N+E$	400	26	17667
L	Spare	3	0	$1 \times$ CERN_AuxPS_Type2	$3 \mathrm{P}+\mathrm{E}$	400.00	286	0
M	Spare	1	0	$4 \times$ CANCUN_50	$3 P N+E$	400	17	0
N	Spare	1	0	1 x CANCUN_50; $1 \times$ CANCUN 20; $1 \times$ SM 35-45 1 x SM15400	$3 P N+E$	400	X	X
0	Control	1	0	FGC Gateway, Ethernet Switch, Pulse Injector	$3 \mathrm{PN}+\mathrm{E}$	400		~2000

TE

Technology Department

B193_R-407 Electrical Requirements: DC Side

			Circuit 1		Circuit 2		Circuit 3		Circuit 4		Circuit 5		Circuit 6	
Cabinet	Application	Number of DC Outputs	Output Voltage / V	Output Current / A	Output Voltage / V	Output Current / A	Output Voltage / V	Output Current / A	Output Voltage / V	Output Current / A	Output Voltage / V	Output Current / A	Output Voltage / V	Output Current / A
A	Operation	2	50	200	50	200	x	x	x	x	x	x	x	x
B	Operation	6	30	50	30	50	30	50	30	50	30	50	30	50
C	Operation	1	450	400	x	x	x	x	x	x	x	x	x	x
D	Operation	6	30	50	30	50	30	50	30	50	30	50	30	50
E	Operation	6	30	50	30	50	30	50	30	50	30	50	30	50
F	Operation	6	30	50	30	50	30	50	30	50	30	50	30	50
G	Operation	5	30	50	30	50	30	50	30	50	30	50	30	50
H	Operation	5	30	50	30	50	30	50	30	50	30	50	30	50
1	Operation	5	650	0	x	x	x	x	x	x	x	x	x	x
J	Operation	3	50	200	x	x	x	x	x	x	x	x	x	x
K	Operation	3	50	200	75	30	75	30	x	x	x	x	x	x
L	Spare	0	x	x	x	x	x	x	x	x	x	x	x	x
M	Spare	0	x	x	x	x	x	x	x	x	x	x	x	x
N	Spare	0	x	x	x	x	x	x	x	x	x	x	x	x
0	Control	0	x	x	x	x	x	x	x	x	x	x	x	x

TE
 Technology Department

AD Upper Floor Electrical Requirements: AC Side

Cabinet	Application	Number of Racks	Number of DC Outputs (up to)	Models	Required Phases	Input Voltage / V	Power Full Load / VA
A	ES Operation	1	18	Commercial	3PN+E	400	<2000
B	ES Operation	1	18	Commercial	3PN+E	400	<2000
D	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
E	ES Operation	1	18	Commercial	3PN+E	400	<2000
F	ES Operation	1	18	Commercial	3PN+E	400	<2000
G	ES Operation	1	18	Commercial	$3 \mathrm{PN+E}$	400	<2000
H	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
1	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
J	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
K	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
L	ES Operation	1	18	Commercial	3PN+E	400	<2000
M	ES Operation	1	18	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
N	SEP Operation	1	3	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
0	Control	1	0	PLC	$3 \mathrm{PN+E}$	400	<2000
P	Control	1	0	FGC Gateway, Ethernet Switch, Pulse Injector	$3 \mathrm{PN}+\mathrm{E}$	400	<2000
Q	Spares	1	0	Commercial	$3 \mathrm{PN}+\mathrm{E}$	400	0

16 Feeders, 16 Racks

AD Upper Floor Electrical Requirements: DC Side

184 Electrostatic Circuits!

Circuit voltages and polarity reversal options to be finalized
EPC will specify cables and connectors and request a job for the placement by EN/EL.

Septum converter rated 1200A. Magnet designed for 1150A.

- Latest operational requirement is 950A.
- Assuming copper cables of $800 \mathrm{~mm}^{\wedge} 2$ ($2 x 400 \mathrm{~mm}^{\wedge} 2$):
- 8.7 V is required in steady state
- 9.1 V is required for 1 second ramp
- $3 \times 15 \mathrm{~V} 400 \mathrm{~A}$ converters connected in parallel is proposed
- Current sharing is active
- Voltage drop of cables is very significant as resistance of the septum is only $8 \mathrm{~m} \Omega$.

Technology
Department \quad Cooling and Ventilation

Only the ring dipole power converter is water cooled.
The expected power to the cooling circuit is $<10 \mathrm{~kW}$.
<10degC temperature rise inlet to outlet
Total max pressure drop of circuit $=3.5 \mathrm{bar}$
In B193_R-407 total losses to air of the order of 40kW -> will be able to provide a more accurate figure. This is also strongly a function of the cycle definition.

TE

Technology Department

List of Power Converters

Designation	Manufacturer					

Technology Conclusions

- Still to define:
- Compensation Solenoid Power Converter (Working on base of CANCUN_50)
- Still to confirm:
- Polarity Reversal Requirements of Electrostatic Elements
- Electron Cooler requirements
- Documentation to upload to EDMS
- Work Package Descriptions
- Data for EN/EL: AC, DC and control cabling requirements
- Circuits must be finalised by the end of November to ensure that EPC can respect foreseen install date of June 2015.

Technology
Department

Overview of Project Plan

2013	2014	2015	2016
Technical Design Report	Market Surveys and Call for Tenders where necessary	Install Power Converters 01/06 - $30 / 10$	ELENA Commissioning $01 / 04-01 / 07$
Work Package Descriptions end of year	Procurement and Manufacture of Power Converters Systems		

Technology
BACKUP - Normal Quadrupole Magnet Characteristics

Parameter	Value	Unit	Remark
Type	Racetrack		
Cooling	Air-cooled		The maximum allowed $\mathrm{j}_{\mathrm{rms}}$ shall therefore be respected
Conductor cross section	6.3×4	$\mathrm{~mm} \times \mathrm{mm}$	Without insulation, IEC 60317-02
Interturn insulation thickness	0.1	mm	Enamelled copper wire
Ground insulation thickness	3	mm	
Edge rounding radius	1	mm	
Number of turns	$6 \times 11=66$		
Distance between coil and yoke	3	mm	
Nominal current density j	1.52	$\mathrm{~A} / \mathrm{mm}^{2}$	
Resistance @ $20^{\circ} \mathrm{c}$	0.103	Ω	For four coils
Inductance	36.4	mH	For four coils
Conductor length per coil	~ 36.3	m	$=66 \times(2.75 \times$ yoke length $)$
Weight per coil	~ 13	kg	

Parameter	Value	Unit	Remark
Nominal current $l_{\max }$	37	A	
Rise time	≥ 1	s	

Technology BACKUP - Skew Quad Magnet Characteristics
Department

Parameter	Value	Unit	Remark
Type	Racetra ck		
Cooling	Aircooled		
Conductor material	Copper		
Conductor dimensions	6.3×4	$\begin{gathered} \mathrm{mm} x \\ \mathrm{~mm} \end{gathered}$	IEC 60317-0-2, dimensions given without insulation
Conductor insulation	0.1	mm	Enamel
Coil windings	$\begin{gathered} 4 \times 11= \\ 44 \end{gathered}$		
Coil cross-section	$\begin{gathered} 71.5 \mathrm{x} \\ 16.8 \end{gathered}$	$\begin{gathered} \mathrm{mm} \mathrm{x} \\ \mathrm{~mm} \end{gathered}$	$=(11 \times 6.3+$ conductor insulation $) \times(4 \times 4$ + conductor insulation); used in simulations
Bending radius	8	mm	= $2 \times$ conductor thickness
Resistance at $20^{\circ} \mathrm{C}$	33	$\mathrm{m} \Omega$	For four coils in series
Inductance	10.3	mH	For four coils in series
Coil mass	~ 2.5	kg	
Parameter	Value	Unit	Remark
Current	33.0	A	
Current density	1.36	A/mm ${ }^{2}$	
Voltage	1.1	V	At steady operation
Voltage during ramp to Inom in 1 s	1.4	V	
Power dissipation	35.6	W	At steady operation

Technology

 Department
BACKUP- H/V Corrector Magnet Characteristics

Parameter	Value	Unit	Remark
Type	Racetrack		
Cooling	Air-cooled		
Conductor material	Copper		
Conductor dimensions	8×4.5	$\begin{gathered} \mathrm{mm} x \\ \mathrm{~mm} \end{gathered}$	Following IEC60317-0-2
Cross section of conductor	35.14	mm^{2}	
Insulation	0.1	mm	Enamelled copper wire
Coil windings	$3 \times 7+2 \times 6 \times 4=69$		The coil is divided in a "main coil" and two "compensation coils" (see Figure 2)
Coil cross-section	$14.1 \times 57.4+2 \times 28.2 \times 32.8$	$\begin{gathered} \mathrm{mm} x \\ \mathrm{~mm} \end{gathered}$	Does not include 2 mm ground insulation
Bending radius	12	mm	
Resistance at $20^{\circ} \mathrm{C}$	33.3	$\mathrm{m} \Omega$	For two coils in series per plane
Inductance	3.9	mH	Per plane
Coil mass	15	kg	Weight per coil; Estimate

Parameter	Value	Unit	Remark
Magnet	MCR		
Curent	40	A	

Technology
 BACKUP - Sextupole Magnet Characteristics

 Department| Cooling |
| :--- | :--- | :--- |
| Conductor material |
| Conductor dimensions |
| Cross section of conductor |
| Insulation |
| Coil windings |
| Average turn length |
| Coil cross-section |
| Bending radius |
| Resistance at $20^{\circ} \mathrm{C}$ |

Value

Racetra
ck
Air-
cooled
Copper

2.5 x	mm x	Table 2, IEC 60317-0-2
7.1	mm	
17.20	$\mathrm{~mm}^{2}$	
0.1	mm	
$6 \times 4=$		
24		Estimate
400	mm	Includes 2 mm ground insulation
14.8 x	mm x	
47.8	mm	$=4 \times$ cable thickness
10	mm	For six coils in series per magnet
60	$\mathrm{~m} \Omega$	Per magnet
5	mH	Estimate
2	kg	

Value

MXR
21
1.2
1.3
1.4

Unit
Remark

A
$\mathrm{A} / \mathrm{mm}^{2}$
V At steady operation

TE

Technology Department

BACKUP - TL Dipole Magnet Characteristics

Parameter	Value	Unit	Remark
Type	Racetra ck		
Cooling	Watercooled		
Conductor material	Copper		
Conductor dimensions	10×10	$\begin{gathered} \mathrm{mm} x \\ \mathrm{~mm} \end{gathered}$	Luvata Nr. 8139
Hole diameter of conductor	5.7	mm	
Cross section of conductor	73.6	mm^{2}	
Insulation	0.5	mm	
Coil windings	$\begin{gathered} 8 \times 8= \\ 64 \end{gathered}$		
Coil cross-section	94×94	$\begin{gathered} \mathrm{mm} \mathrm{x} \\ \mathrm{~mm} \end{gathered}$	Includes 3 mm ground insulation
Bending radius	20	mm	$=3.5 \mathrm{x}$ hole diameter
Resistance at $20^{\circ} \mathrm{C}$	47	$m \Omega$	For two coils in series per magnet
Inductance	32	mH	Per magnet
Coil mass	70	kg	Estimate

Parameter	Value	Unit	Remark
Magnet	MBL		
Current	285	A	
Current density	3.9	$\mathrm{~A} / \mathrm{mm}^{2}$	
Voltage	13.4	V	At steady operation
Maximum voltage during	18	V	

Table from DS 07/08/2013

Element type	Label	Short label	Total number of magnets	Resistance in mOhm	i mH	field
	PXMBHEKCW					
Bending Magnet, Horizontal	P	MBR	8	8 47	34	326
Quadrupole, Normal	PXMQNLGNAP	MQR	13	3103	36	37
Sextupole, Normal	PXMXNADNAP		5	560	6	21
Quadrupole, Skew	PXMQSABNAP	MQS	3	333	10	33
	PXMCCAYWA					
Corrector $\mathrm{H}+\mathrm{V}^{*}$	P	MCR	9	932	4	45
Solenoid	PXMLNAFNAC	MLR	3	3 TBD	TBD	TBD
	PXMBHCBCW					
TL Bending magnet	P	MBL	3	347	32	285

Technology Department

2.1 Measurement Characteristics	
Nominal Output Voltage	10 V
Nominal current	600A
Output polarity	Bipolar (no discontinuity at zero)
Stability	<2 ppm over 30 minutes
Unipolar linearity	< 10 ppm (for both polarities)
Gain	$\begin{aligned} & +10 \mathrm{~V} \text { at }+600 \mathrm{~A} \\ & -10 \mathrm{~V} \text { at }-600 \mathrm{~A} \end{aligned}$
Gain: adjustment and resolution	Adjustable to 0 ppm error, Resolution 0.2 ppm , Range $\pm 200 \mathrm{ppm}$
Gain: initial error	< 50 ppm
Gain: drift	< $5 \mathrm{ppm} / 24 \mathrm{~h},<10 \mathrm{ppm} /$ month, $<30 \mathrm{ppm} /$ year
Gain: temperature coefficient	<2 ppm/K
Positive-Negative gain error	< 5ppm
Output offset: adjustment and resolution	Adjustable to 0 ppm error, Resolution 0.2 ppm Range $\pm 100 \mathrm{ppm}$
Output offset: initial error	< 5 ppm
Output offset: drift	<3ppm/24h, $<5 \mathrm{ppm} /$ month, $<10 \mathrm{ppm} /$ year
Output offset: temperature coefficient	< 1 ppm/K
CMRR	$>80 \mathrm{~dB}$ @ DC to 100 Hz
Bandwidth of output signal	15 kHz
Rms value of output noise related to $V_{\text {out }}$	$\begin{aligned} 10 \mathrm{~Hz} \ldots 100 \mathrm{~Hz} & <2 \mathrm{ppm}^{\mathrm{pp}} \\ 100 \mathrm{~Hz} \ldots 10 \mathrm{kHz} & <10 \mathrm{ppm}^{\mathrm{pp}} \\ >10 \mathrm{kHz} & <30 \mathrm{ppm}^{\mathrm{pp}} \end{aligned}$

