

The ELENA Electron Cooler - Requirements and Magnet System

Lars V. Jørgensen, BE-OP ELENA Review – Oct. 14, 2013

The Need for Electron Cooling

- Electron cooling essential in ELENA to counter emittance blow-up caused by the deceleration process.
- To prepare bunches with sufficiently low emittance for extraction to the experiments via the electrostatic extraction lines.
- Cooling needed at 2 momenta: 35 MeV/c and 13.7 MeV/c.
- Expected emittances prior

to cooling:
@ 35 Mev/c:

$$\epsilon \sim 50 \pi \text{ mm mrad}$$

 $(\Delta p/p) = \pm 2 \times 10^{-3}$

Needed emittances at extraction

$$\varepsilon \le \sim 3 \text{ m m m mrad}$$

 $(\Delta p/p) \le \pm 1 \times 10^{-3}$

General requirements

Must be very compact!

Must fit in Section 4 incl. solenoid compensators and correctors.

~ 2 meters available for the electron cooler.

Space constraints also necessitate 90° bends on relatively small radius (25 cm)

Further requirements

- Operate at very low electron energies (down to 55 eV).
- Operate at very low magnetic field to minimize disturbance to circulating low energy antiprotons – we have chosen 100 Gauss in the cooler.
- Have extremely good vacuum.
- Adiabatic expansion to reduce transverse temperatures.
- Very good field quality especially in the cooler solenoid (B₁/B_{||} < 5 × 10⁻⁴).
- Orbit correctors and solenoid compensators.

Electron Cooler parameters

Momentum (MeV/c)	35	13.7
β	0.037	0.015
Electron beam energy (eV)	355	55
Electron current (mA)	5	2
Electron beam density (m ⁻³)	1.38 x 10 ¹²	1.41 x 10 ¹²
B _{gun} (G)	1000	
B _{drift} (G)	100	
Expansion factor	10	
Cathode radius (mm)	8	
Electron beam radius (mm)	25	
Twiss parameters (m)	β_h =2.103, β_v =2.186, D=1.498	
Flange-to-flange length (mm)	1930	
Drift solenoid length (mm)	1000	

Kyoto connection

- requirements lead us to look for inspiration at the very compact and relatively low energy e-cooler built by Toshiba Corp. for the S-LSR ring in Kyoto.

S-LSR electron cooler		
Magnetic field uniformity in drift solenoid	5×10 ⁻⁴	
Electron beam energy (keV)	1-5	
Electron current (mA)	50-400	
Gun perveance (µP)	2.2	
B _{gun} (G)	1500	
B _{drift} (G)	500	
Expansion factor	3	
Cathode radius (mm)	15	
Electron beam radius (mm)	25	
Twiss parameters	$\beta_h=1.7, \beta_v=2.4$	
Bending radius (mm)	250	
Drift solenoid length (mm)	800	

The magnet system

Magnetic system components

- Main cooler solenoid
- Gun solenoid
- Collector solenoid
- Expansion solenoid
- Reverse coil at collector
- 2 x Toroid section consisting of
 9 racetrack coils each
- Various corrector coils to ensure good field quality
- Orbit correctors
- Solenoid compensators

Correction coils

- Double Helmholtz transverse correctors for the 3 main solenoids to correct for stray fields and other remnant static fields
- End winding correctors on 3 main solenoids *in case it is needed!*
- Main Y correctors at the end of the cooler solenoid crucial to extend the good field region
- Several (up to 8) small Y correctors inside the cooler solenoid for fine tuning the good field region
- Coils inside the toroid section to steer the electrons *if needed*
- Toroid kick orbit correctors just outside the toroids to cancel out the kick to the antiprotons from the toroids
- Solenoid compensators further out to cancel out the horizontalvertical coupling induced by the solenoid field

The whole package

- The whole system will be shielded to attain better field quality and to exclude stray fields - ~ 1 Gauss in the area of the AD where it will be installed.
- The electron cooler will be mounted horizontally for ease of maintenance.

Orbit correctors

Two types of orbit correctors have been studied:

Kyoto-style is more compact Standard is based on an existing LINAC4 design and offers the possibility of a local bump (steering in both directions)

Axial field - electrons

Axial field without correction

Conclusion: The expansion coil has a significant influence on the axial field in the drift solenoid.

Transverse field - electrons

Conclusion: Moving the expansion coil further away makes the field at the center of the drift solenoid flatter and much easier to correct.

Orbit correctors

Axial field - antiprotons

Final field incl. all transverse and orbit correctors

The good field region

Standard: $B_{\perp}/B_{\parallel} < \pm 3 \times 10^{-4}$ for 63 cm

Kyoto: $B_{\perp}/B_{\parallel} < \pm 5 \times 10^{-4}$ for 65 cm

77 A/cm2 in orbit correctors
14 A/cm2 in US transverse corrector
7 A/cm2 in DS transverse corrector

32 A/cm2 in orbit correctors 14 A/cm2 in US transverse corrector 7 A/cm2 in DS transverse corrector

Orbit correctors and bumps

The standard orbit correctors take up more space – and we would have to go to a different design to be able to make a sizeable local bump – but luckily we have a little space left over!

