

Magnets

Daniel Schoerling on behalf of WP 2.2 and WP 2.16

ELENA Project Review $14^{th} - 15^{th} \text{ October 2013}$ 31-3-004 - IT Amphitheatre

Overview

A

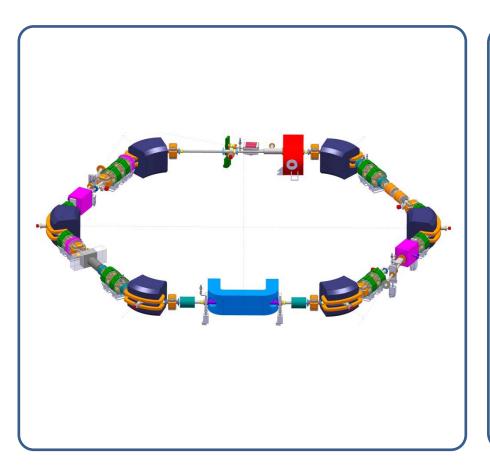
I. Introduction, scope of work package & workflow

B

I. Challenges and solutions for all required magnet families

I. Schedule

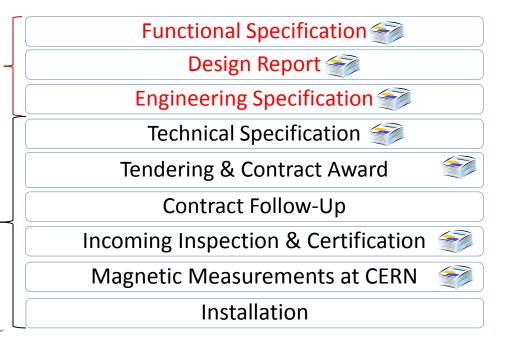
II. Summary of parameters


III. Procurement strategy

IV. Conclusion

A.I Introduction: Magnet System

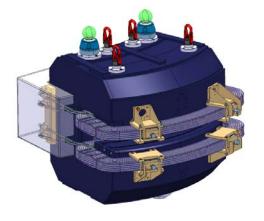
- 51 magnets (incl. spare) of 7 types
- Ring magnets + AD-ELENA TL magnets
- Normal-conducting magnets
- Water and air cooled
- Mostly iron-dominated; laminated yokes
- Coil cooling designed for DC operation at maximum field

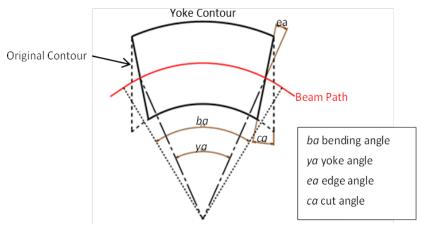


A.I Simplified Workflow: ELENA Magnets

Design phase

Procurement & Installation


- Functional Specifications define all required information for the design.
- Design Reports document the design process and the taken design decisions.
- Engineering Specifications define the interfaces to other WPs.
- Further changes of parameters will require to issue an Engineering Change Request.

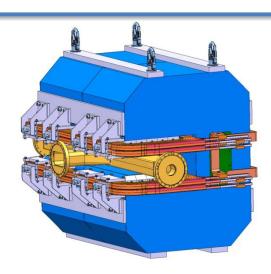


B.I Magnets: ELENA Dipole Magnet

Parameter	Value				
Number	6 + 1 (Reference) + 1 (Spare)				
Field	0.37 T (0.42 T) to 0.05 T				
Pole iron gap	76 mm				
Bending angle	60°				
Radius	927 mm				
Magnetic length	970 mm				
Cut angle	13°				
Ramping speed (up)	0.37 T/s				
Ramping speed (down)	0.05 T/s				
Good-field-region	±2·10 ⁻⁴ , 66 mm (H) x 48 mm (V)				

B.I Magnets: ELENA Dipole Prototype

Challenge


 Excellent and repeatable field quality is requested at very low field.

Solution

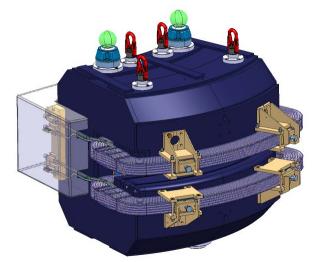
- Selection of high permeability electrical steel M270-50 A HP.
- Dilution of electrical steel with non-magnetic stainless steel to increase the magnetic induction in the iron and avoid working in the highly nonlinear area of the BH-curve.

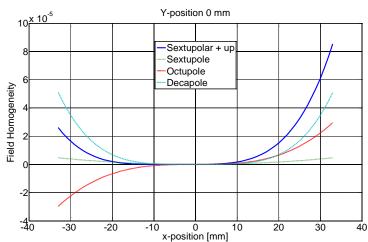
Prototype

- Manufacturing methods were studied.
- Planned magnetic measurements: local and integrated dynamic effects, field homogeneity, hysteresis effects, local effect of dilution.
- Concept of shimming will be tested.

Comprehensive Design Study to be published as ATS report

Status


- ELENA dipole prototype measurements are starting.
- Magnetic design finished.
- Engineering and technical specifications are under approval.


Challenges

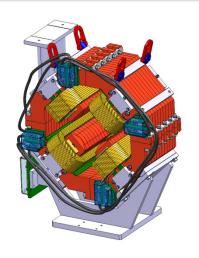
- Production of the curved yoke is challenging and will require a close follow-up.
- Shimming of final magnet is expected to be time intensive to achieve the requested field homogeneity of ±2·10⁻⁴ through out the whole working range.
- Eddy currents in vacuum chambers are considered a non-issue and will be measured using the prototype.

Measurement

• Measurement with flux meter is challenging due to small dB_y/dt : long lead item, design and production will start now.

Comprehensive Design Report to be published on EDMS #1311860

Status


- Magnetic design finished.
- All documents for call for tender are under approval.
- The design provides stable field quality over the whole required range.

Challenges

- The remanent gradient is only around 2 times smaller than the minimum required gradient: $G_{\rm res} = -\frac{2\mu_0 H_{\rm c} l_{\rm iron}}{r^2} = 9.2 \times 10^{-3} \, {\rm T/m}.$
- Magnets will have to be powered by using the same cycle.
- Prototype is foreseen to validate the above mentioned calculations.

Measurement

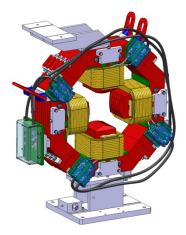
 Magnetic measurement of integral field will be performed with existing rotating coil system.

Number of magnet	12 + 3 + 1			
Field gradient	0.02-1.45 T/m			
Mechanical aperture	124 mm			
Magnetic length	250 mm			
Good-field-region	±5 · 10 ⁻⁴ at ∅54 mm			
Designed good-field-region	1.1 · 10 ⁻⁴ at ∅54 mm			

Design Report published on EDMS #1302869

B.I Magnets: ELENA Ring Skew Quadrupoles

Status


- Magnetic design finished.
- All documents for call for tender are under approval.
- Similar design as for normal quadrupole: Yoke is shorter and coils have less windings.

Challenges

 Same challenges as for normal quadrupole; the prototype will also answer all questions for the skew quadrupole.

Measurement

 Magnetic measurement of integral field will be performed with existing rotating coil system.

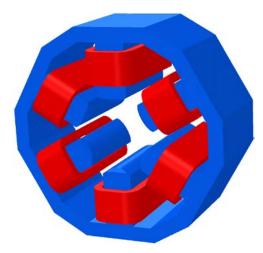
Number of magnet	2 + 1				
Field gradient	0.023-0.88 T/m				
Mechanical aperture	124 mm				
Magnetic length	150 mm				
GFR	$\pm 1 \cdot 10^{\text{-2}}$ at $arnothing$ 46 mm				
Designed GFR	9.2 · 10 ⁻⁵ at ∅46 mm				

Design Report published on EDMS #1310534

B.I Magnets: ELENA Ring Sextupole

Status

- Magnetic design finished.
- Functional drawings started.
- The design provides stable field quality over the whole required range.


Challenges

- The dynamic range is unusually large: 330!
- The remanent gradient is larger than the minimum required gradient:

$$B_{\rm rem}^{\prime\prime}=-\frac{6H_cl_{\rm mag}\mu_0}{R^3}=0.23\frac{\rm T}{\rm m^2}.$$
 For same cycles, this can be solved by inverting the current direction.

Measurement

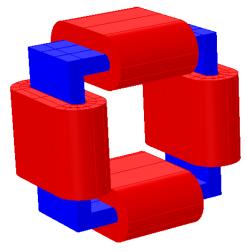
 Magnetic measurement of integral field will be performed with existing rotating coil system.

Number of magnet	4+1			
Field gradient	0.12 - 40 T/m ²			
Mechanical aperture	89 mm			
Magnetic length	150 mm			
GFR	±2 · 10 ⁻³ at ∅40 mm			
Designed GFR	$1\cdot 10^{\text{-5}}$ at $arnothing$ 40 mm			

Design Report published on EDMS #1308783

B.I Magnets: ELENA Ring & TL H/V Correctors

Status


- Magnetic design finished.
- Functional drawings started.

Challenges

- No particular challenges, standard design.
- Cross-talk and remanent fields will be measured for typical ELENA cycles with a similar available corrector.

Measurement

 Magnetic measurement of integral field will be performed with existing rotating coil system.

Number of magnet	8 (+ 2) + 3 + 2			
Integrated field	6· 10 ⁻³ Tm			
Mechanical aperture	124 mm			
Magnetic length	310 mm			
GFR	$\pm 1\cdot 10^{ ext{-}2}$ at $arnothing$ 44 mm			
Designed GFR	1.9 · 10 ⁻³ at ∅44 mm			

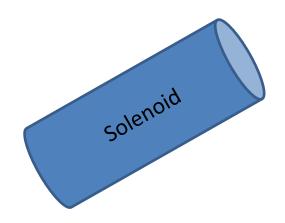
Design Report published on EDMS #1308780

B.I Magnets: ELENA Compensation Solenoids

Status

- Compensation solenoids and E-cooler should be considered as a design unit.
- Parameters (length, integrated field) have to be optimized depending on space required for Ecooler.

Challenges


 Standard solenoid with moderate field quality requirements should not provoke challenges.

Measurement

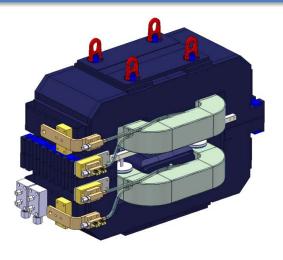
 Measurement will be performed with stretched/vibrating wire measurement system.

Possible Design

$$NI = 23873 \text{ A}, I_{\rm max} = 40 \text{ A}, N = 600, A_{\rm cable} = 5 \times 8 \text{ mm}^2 = 39.14 \text{ mm}^2$$
, 35 Turns, 17 Layers, $U_{\rm DC} \approx 8 \text{ V}$

Number of magnet	2 + 1
Field	0.1 T, TBD
Magnetic length	300 mm, TBD
Aperture	89 mm

Status


- Magnetic design finished.
- Functional drawings almost finished.

Challenges

- No particular challenges, standard design.
- Laminated to allow for ramping, but pole profile can be machined to ease the manufacturing process.

Measurement

 Magnetic measurement of integral field will be performed with existing rotating coil system.

Number of magnet	2 + 1				
Field	0.67 T				
Bending angle	40 degree				
Mechanical aperture	65 mm				
GFR, straight	±1 · 10 ⁻³ at 68 x 48 mm ²				
Designed GFR, straight	±3 · 10 ⁻⁴ at 68 x 48 mm ²				

Design Report published on EDMS # 1297334

ELENA RING

Design- Status	Element type	Label	Short label	Total number of magnets	Aperture in mm	Good- field region in mm	Integrated field homogeneity	Magnetic length in m	Mechanica I length in m	Maximum field strength	Minimum field strength	Instrumentation
•	Bending Magnet, Horizontal	PXMBHEKCWP	MBR	8	76	66 (H) x 48 (V)	±2·10 ⁻⁴	0.97	1.20	0.42 T	0.05 T	None
	Quadrupole, Normal	PXMQNLGNAP	MQR	13	Ø124	Ø54	±5·10 ⁻⁴	0.25	0.31	1.45 T/m	0.02 T/m	BPMs
	Sextupole, Normal	PXMXNADNAP	MXR	5	Ø89	Ø40	±2·10 ⁻³	0.15	0.16	40 T/m²	0.12 T/m ²	None
	Quadrupole, Skew	PXMQSABNAP	MQS	3	Ø124	Ø46	±1·10 ⁻²	0.15	0.17	0.88 T/m	0.023 T/m	None
	Corrector H+V	PXMCCAYWAP	MCR	9 (+2)	Ø124	Ø44	±1·10 ⁻²	0.31	0.22	6·10 ⁻³ Tm (integrated)	-	BPMs
	Solenoid	PXMLNAFNAC	MLR	3	TBD	TBD	TBD	TBD	TBD	TBD	-	None

TL AD to ELENA

Design- Status	Element type	Label	Short label	Total number of magnets	Aperture in mm	Good- field region in mm	Integrated field homogeneity	Magnetic length in m	Mechanical length in m	Maximum field strength	Instrumentation
	Bending Magnet, Horizontal	PXMBHCBCWP	MBL	3	65	68 (H) x 48 (V)	±1·10 ⁻³	0.35	0.49	0.67 T	None
	Quadrupole, Normal	PXMQNLGNAP	MQR	3	Ø124	Ø54	±5·10 ⁻⁴	0.25	0.31	1.45 T/m	None
	Quadrupole, Normal	PXMQNAFNWP	QPMA	1	Ø60	Ø20	±2·10 ⁻³	0.23	0.30	11.2 T/m	None
	Corrector H+V	PXMCCAYWAP	MCR	4	Ø124	Ø44	±1·10 ⁻²	0.31	0.22	6·10 ⁻³ Tm (integrated)	None

Fixed parameters, further changes require a formal Engineering Change Request (ECR) for green and yellow items!

C. II Schedule

- Re-optimization of the schedule was necessary to cope with the late delivery of the magnet parameters.
- An optimization of the schedule makes a magnet delivery until 15/12/2015 possible.
- We will try our best to catch up the remaining delay by trying to accelerate the approval process inside
 CERN and by performing close follow-up after contract placement.

Dipole Schedule:

"	D	Task Name	Start	Finish	Duration	Q4 13 Q1 14 Q2 14 Q3 14 Q4 14 Q1 15 Q2 15 Q3 15
-	1	Prototype Measurement	15/10/2013	13/12/2013	8w 4d	
2	2	Contract Preparation & Placement	15/10/2013	17/02/2014	18w	
3	3	Pre-Series Production	08/04/2014	17/02/2015	45w 1d	
4	4	Series Production & Acceptance	01/01/2015	01/12/2015	47w 4d	
į	5	Installation Period	04/08/2015	15/12/2015	19w 1d	

C.III Procurement Strategy: ELENA Magnets

- All magnet families will be procured independently of each other (in total 6 contracts) because all manufacturers are small and have currently many contracts to follow.
- Normal and skew quadrupole magnets share the same lamination design and will be therefore procured together.
- Bending magnets and quadrupoles are expected to be in the contract class >200 kCHF and require an Invitation to Tender. A Market Survey was performed and 6 companies were qualified.
- Four contracts are expected to be in the contract class < 200 kCHF and will require no pre-qualification. Qualified companies, and depending on experience new suppliers, will be asked to provide offers.
- Electrical steel and stainless steel will be procured by CERN and delivered to the companies to reduce the delay and facilitate the procurement.

C. IV Conclusion

The following specifications/activities are finished:

- Functional Specifications
- Design Reports for all magnets (except solenoids)
- Dipole prototype; measurements are starting
- Engineering Specification: MQR, MQS, MBR; for other magnets information available
- Functional drawings: MQR, MQS, MBR, MBL under approval; MXR & MCR under preparation
- Technical Specification: MBR, MQR & MQS approval process started

We see the following challenges:

- Technical challenges can be addressed with prototypes for the bending magnet and the quadrupole.
- Measuring the ELENA dipole magnet requires a dedicated flux meter.
- Parameters of the compensation solenoid are required before starting with the design.
- To meet the schedule and avoid technical complications design changes should be avoided in the future.
- Further changes on the magnet's parameter will require a formal Engineering Change Request.