

The tau lepton in B decays

Ryoutaro Watanabe

(KEK, Japan \rightarrow IBS, Korea)

B meson decays have been used to investigate the flavor structure in the quark sector due to their various final states.

Belle & BABAR have measured a lot of processes, studied them, and then found the validity of large part of **flavor structure in SM**.

Among them, **B decays with "tau lepton"** have special meanings. Because...

3rd generation is important clue to new physics beyond SM

 \rightarrow Potentially sensitive to new physics

Some particular kind of analysis is required for the measurement

 \rightarrow Challenging task to identify the tau lepton in the final state

Conceivable decay modes:

Already measured:

 $\bar{B} \to \tau \bar{\nu}, \quad \bar{B} \to D \tau \bar{\nu}, \quad \bar{B} \to D^* \tau \bar{\nu}$ Today's topic

• Not (yet) measured:

 $\bar{B} \to (\pi, D^{**})\tau\bar{\nu}, \ B_c \to (X)\tau\bar{\nu}, \ B_{(s)} \to (X)\tau\tau, \ \dots \text{etc.}$

[See, for example, Biancofiore et. al. arXiv:1302.1042]

Content

Review on tauonic B decays

- Theory
- Experiment

New physics

- Effective operator analysis
- Several models

Observables

- Asymmetry, polarization
- CP violation

Near future prospects

- q^2 distribution

Review on tauonic B decays

Tau in a final state

- It is challenging to measure tauonic B meson decays,
 because more than 2 neutrinos go through the detector.
- At B factory, however, reconstructing the opposite B mesons we can compare the properties of the remaining particles to those expected for signal and background: "Full reconstruction".

Status on B->TV

Tree level process via Vub in the SM

$$\mathcal{B}(\bar{B} \to \tau\bar{\nu}) = \frac{|V_{ub}|^2 f_B^2}{8\pi\tau_B} G_F^2 m_B m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2$$

* Latest average: $f_B = (190.5 \pm 4.2) \text{MeV}$

[FLAG, arXiv:1310.8555]

• Experimental result & determination of Vub

[BABAR2012, Belle2012]

	BABAR	Belle	CKM fit
$\mathcal{B}(\bar{B} \to \tau \bar{\nu}) \times 10^4$	1.79 ± 0.48	0.96 ± 0.26	1.14 ± 0.23
$ V_{ub} \times 10^3$	5.28 ± 0.72	3.87 ± 0.53	3.38 ± 0.15

- * Combination of "semi-leptonic tag" & "hadronic tag" for Btag
- * Discrepancy in determination of [Vub] is one of most important issues. But today, I don't go deeply into it.

On average, data is in (good) agreement with SM

Status on $B \rightarrow DTV \& B \rightarrow D^*TV$

• Tree level process via Vcb in the SM

 $\begin{aligned} \mathcal{B}(\bar{B} \to D\tau\bar{\nu}) \propto |V_{cb}|^2 \mathcal{G}(1)^2 \times \{\text{function of } \rho_1^2 \} \\ \mathcal{B}(\bar{B} \to D^*\tau\bar{\nu}) \propto |V_{cb}|^2 \mathcal{F}(1)^2 \\ \times \{\text{func. of } \rho_{A_1}^2, R_1(1), R_2(1) \} \end{aligned}$

* D=pseudo-scalar, D*=vector

* $\mathcal{G}, \mathcal{F}, \rho^2, R$ are FF parameters

Hadronic uncertainty and measurement

Vcb & FF parameters are obtained by a fit to distributions of $\bar{B} \to D^{(*)} \ell \bar{\nu}$ for $\ell = e$ or μ . For an observable of $\bar{B} \to D^{(*)} \tau \bar{\nu}$, normalized decay rate;

$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})} \qquad \qquad R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$$

is used in order to cancel $|V_{cb}|\mathcal{G}(1)$, $|V_{cb}|\mathcal{F}(1)$ and reduce FF uncertainties.

Status on $B \rightarrow DTv \& B \rightarrow D^*Tv$

• Experimental result [Belle private combination, BABAR in arXiv:1205.5442]

Normalized decay rate:
$$R(D) = \frac{\Gamma(\bar{B} \to D\tau\bar{\nu})}{\Gamma(\bar{B} \to D\ell\bar{\nu})}$$
 $R(D^*) = \frac{\Gamma(\bar{B} \to D^*\tau\bar{\nu})}{\Gamma(\bar{B} \to D^*\ell\bar{\nu})}$

	Belle	BABAR	SM
R(D)	0.430 ± 0.091	$0.440 \pm 0.058 \pm 0.042$	0.297 ± 0.017
$R(D^*)$	0.405 ± 0.047	$0.332 \pm 0.024 \pm 0.018$	0.252 ± 0.003
correlation	neglected	-0.27	-

3.40 deviation from SM!

* reported by BABAR
* 2.0σ for R(D), 2.7σ for R(D*)

Type-II 2HDM is disfavored

- * Charged Higgs can contribute
- * cannot explain data at the same time

New physics

(Very quick review)

Model independent analysis

$$\begin{cases} \mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{\boldsymbol{q}b} \Big[(1+C_{V_1}^{\boldsymbol{q}})\mathcal{O}_{V_1}^{\boldsymbol{q}} + C_{V_2}^{\boldsymbol{q}}\mathcal{O}_{V_2}^{\boldsymbol{q}} \\ + C_{S_1}^{\boldsymbol{q}}\mathcal{O}_{S_1}^{\boldsymbol{q}} + C_{S_2}^{\boldsymbol{q}}\mathcal{O}_{S_2}^{\boldsymbol{q}} + C_T^{\boldsymbol{q}}\mathcal{O}_T^{\boldsymbol{q}} \Big] \end{cases}$$

Effective operators

Vector1: $\mathcal{O}_{V_1}^{q} = \bar{q}_L \gamma^{\mu} b_L \, \bar{\tau}_L \gamma_{\mu} \nu_L$ Vector2: $\mathcal{O}_{V_2}^{q} = \bar{q}_R \gamma^{\mu} b_R \, \bar{\tau}_L \gamma_{\mu} \nu_L$ Tensor: $\mathcal{O}_T^{q} = \bar{q}_R \sigma^{\mu\nu} b_L \, \bar{\tau}_R \sigma_{\mu\nu} \nu_L$ Scalar1: $\mathcal{O}_{S_1}^q = \bar{q}_L b_R \, \bar{\tau}_R \nu_L$ Scalar2: $\mathcal{O}_{S_2}^q = \bar{q}_R b_L \, \bar{\tau}_R \nu_L$

Wilson coefficients

Cx represent "New Physics" contribution normalized by SM contribution No right-handed neutrino is assumed.

[RW, in my PhD thesis]

NP contribution: $\mathcal{B}(\bar{B} \to \tau \bar{\nu}) = |1 + r_{\rm NP}|^2 \cdot \mathcal{B}(\bar{B} \to \tau \bar{\nu})_{\rm SM}$

Allowed range: $|1 + r_{\rm NP}|^2 = 1.24 \pm 0.16$

where
$$r_{NP} = C_{V_1}^u - C_{V_2}^u + \frac{m_B^2}{m_b m_\tau} \left(C_{S_1}^u - C_{S_2}^u \right)$$

[RW, in my PhD thesis]

• Bound on operator \mathcal{O}_X^c from R(D) & R(D*) [M.Tanaka&RW, arXiv:1212.1878]

-1.0

2.0-1.5-1.0-0.5 0.0 0.5

Re CT

* allowed at 90%(Light blue), 95%(Cyan), 99%(Dark blue)

• Bound on operator \mathcal{O}_X^c from R(D) & R(D*) [M.Tanaka&RW, arXiv:1212.1878]

2 Higgs Doublet Models

• Type of 2HDM

In order to forbid tree level FCNC,

only one of two Higgs doublets couples to each fermion doublet:

 $\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_u u_R - \bar{Q}_L Y_d H_d d_R - \bar{L}_L Y_\ell H_\ell \ell_R + \text{h.c.}$

* H1 or H2 is assigned to Hu, Hd, and H1 one by one

As a result, there are 4 distinct types for Yukawa structure:

Type I :
$$H_2 = H_u = H_d = H_\ell$$

 Type II : $H_2 = H_u$,
 $H_1 = H_d = H_\ell$

 Type X : $H_2 = H_u = H_d$,
 $H_1 = H_\ell$

 Type Y : $H_2 = H_u = H_\ell$,
 $H_1 = H_\ell$

[X,Y is named by Kanemura et. al. arXiv0902.4665]

 V_1 V_2 S_1 S_2 T

2 Higgs Doublet Models

 $V_1 \quad V_2 \quad S_1 \quad S_2 \quad T$

· Corresponding Wilson coefficients

$$C_{S_1}^{u} = C_{S_1}^{c} = -\frac{m_b m_\tau}{m_{H^{\pm}}^2} \xi_1 \,, \quad C_{S_2}^{u} = -\frac{m_u m_\tau}{m_{H^{\pm}}^2} \xi_2 \,, \quad C_{S_2}^{c} = -\frac{m_c m_\tau}{m_{H^{\pm}}^2} \xi_2 \,$$

- * Charged Higgs contributes
- * ξ depends on the type:

Ser 2 3	1212 122 123		frank states	
	Type I	Type II	Type X	Type Y
ξ_1	$\cot^2\beta$	$\tan^2\beta$	-1	-1
ξ_2	$-\cot^2\beta$	1	1	$-\cot^2\beta$

- * For S1, "u"&"c" have the same contribution
- * For S2, "u" is suppressed, and thus "c" has independent contribution
- Bound
 - For S1, same contribution in "u"&"c" is apparently not favored according to model independent analysis.

For S2, Best fit C^{c}_{52} ~-1.6 from R(D) & R(D^{*}) then, TypeI & Y are unlikely, because they cannot have negative C_{52} TypeII & X are disfavored, because $\xi_2 = 1$, $m_{H^{\pm}} \sim \mathcal{O}(1)$ GeV

2HDM with tree level FCNC

 $V_1 V_2 S_1 S_2 T$

"S2 enhancement" can be realized allowing FCNC : [Crivellin et. al. arXiv:1206.2634]

ex.)
$$\mathcal{L}_{\text{yukawa}} = -\bar{Q}_L Y_u \tilde{H}_2 u_R - \bar{Q}_L Y_d H_1 d_R - \bar{L}_L Y_\ell H_1 \ell_R + \text{h.c.}$$

 $-\bar{Q}_L \epsilon'_u \tilde{H}_1 u_R - \bar{Q}_L \epsilon'_d H_2 d_R + \text{h.c.}$

* $\boldsymbol{\epsilon}$ is coupling that control FCNC in the weak basis

* Constraint on FCNC in up-quark sector ϵ_u is rather weak

S2 type contribution to $B \rightarrow D(*) \tau \nu$: $C_{S_2}^c \simeq \frac{V_{tb}}{\sqrt{2}V_{cb}} \frac{vm_{\tau}}{m_{H^{\pm}}^2} (\epsilon_u^*)^{tc} \sin\beta \tan\beta$

Best fit value is $\epsilon_u^{tc} \sim -0.7$ with $m_{H^{\pm}} = 500 \text{GeV}, \tan \beta = 50$

We may predict top FCNC decay such as $t \rightarrow ch$

* Br $(t \to ch) \simeq 0.12 \times |\epsilon_u^{tc}|^2 \cos^2(\alpha - \beta) \simeq 0.06 \times \cos^2(\alpha - \beta)$

* Observed limit at 14TeV LHC of 100fb^-1: $Br(t \rightarrow ch) < 4.1 \times 10^{-5}$ [J. Aguilar-Saavedra, hep-ph/0409342]

R Parity Violation

 $V_1 V_2 S_1 S_2 T$

Only considering a contribution to $B \rightarrow D(*) \tau \nu$

Superpotential: $W_{\rm RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c$

correspond to S1, then this is disfavored

correspond to V1, It is likely to explain the results, but incompatible with B→Xsvv:

 $\mathcal{B}(B \to X_s \nu \bar{\nu}) < 6.4 \times 10^{-4}$

[ALEPH collaboration, hep-ex/0010022]

33*] 2 R $V_1 \ V_2 \ S_1 \ S_2 \ T$

Only considering a contribution to $B \rightarrow D(*) \tau \nu$

Classification of interaction: 4 independent types generated

[Tanaka et. al. arXiv:1309.0301]

They $a_{3\sigma(l=3)}^{1\sigma(l=3)}$ $\sigma(l=3)$ $\sigma(l=3)$

New physics: summary

- 2 Higgs Doublet Model: $V_1 \ V_2 \ S_1 \ S_2 \ T$
 - Usual 2HDM cannot explain the recent R(D)&R(D*)
 - FCNC induced S2 can explain them
- R Parity Violation: $V_1 \ V_2 \ S_1 \ S_2 \ T$
 - S1 type is generated, and is disfavored
 - V1 type is generated, but it is incompatible with $B{\rightarrow}X_svv$
- Lepto Quark: $V_1 \ V_2 \ S_1 \ S_2 \ T$
 - S1&V1 type are generated and disfavored as well as RPV
 - S2-T types are generated and likely to explain the results

Observables

New physics analyzer

- Compared with two body decay; B→Tv,
 - many more observables are available in three body decays; $B \rightarrow D(*)\tau v$
- Actually, there are several studies for NP search using such observables (q^2 distributed and/or integrated)
 Pick up

```
Asymmetry:
```

for CP violation $\begin{array}{l} \text{in } B \rightarrow D\tau v \\ \text{in } B \rightarrow D^*\tau v \end{array}$ [Sakaki et. al. arXiv:1403.5892] in $B \rightarrow D^*\tau v$ [Duraisamy et. al. arXiv:1302.7031, arXiv:1405.3719]

for Tensor operator [Biancofiore et. al. arXiv:1302.1042]

to distinguish NP operators [Sakaki, arXiv:1205.4908; Datta et. al. arXiv1206.3760]

Polarization:

to distinguish NP operators

[Tanaka&RW, arXiv:1212.1878; Datta et. al. arXiv1206.3760]

Multi-pion tau decays

Successive decay involving vector resonance;

$$\begin{array}{ll} \bar{B} \rightarrow D\tau \bar{\nu}_{\tau} & * \text{ vector mesons: } V = \rho, \ \rho', \ a_1, \cdots \\ & \tau \rightarrow V\nu_{\tau} \\ & V \rightarrow 2\pi, \ \text{or } 3\pi \end{array} \right\} * \text{Br} \sim 44\% \ \text{of tau decay} \end{array}$$

can provide CP violated observable $d\Gamma - d\Gamma^{CP} \neq 0$;

$$\boldsymbol{A(q^2)} \equiv \frac{1}{\Gamma + \Gamma^{CP}} \int dE_V dQ^2 d\cos\theta_V \cdot \left(\int_0^1 - \int_{-1}^0\right) d\cos\hat{\theta}_1 \cdot \left(\int_0^\pi - \int_{\pi}^{2\pi}\right) d\hat{\phi}_1 \frac{d\Gamma - d\Gamma^{CP}}{d\Phi}$$

 $d\Phi = dq^2 dE_V d\cos\theta_V dQ^2 d\cos\hat{\theta}_1 d\hat{\phi}_1$

* $q^2 = (p_{\bar{B}} - p_D)^2$

where $(\hat{\theta}_1, \hat{\phi}_1)$ are angles which represent charged pion direction;

* Similar to CP conjugate mode

Multi-pion tau decays

[Sakaki, Hagiwara, Nojiri, arXiv:1403.5892]

Accessibility to CP violation:

ImCx, including its sign, affects the shape of the quantity

 $A_n(q^2) = \int dE_V A_n(q^2, E_V)$

14年3月29日土曜日

Multi-pion tau decays

[Sakaki, Hagiwara, Nojiri, arXiv:1403.5892]

ImCx, including its sign, affects the shape of the quantity

 $A_n(q^2) = \int dE_V A_n(q^2, E_V)$

Reach of integrated asymmetry

Near future prospect

[Work in progress by Sakaki, Tayduganov, Tanaka &RW]

Already measured "distribution"

[BABAR, arXiv:1303.0571]

BABAR has studied q^2 distribution: $d\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu})/dq^2$

* will be obtained more precisely at Belle2 in early year of running

Near future prospect

[Work in progress by Sakaki, Tayduganov, Tanaka & RW]

Already measured "distribution"

BABAR has studied q² distribution: $d\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu})/dq^2$

* will be obtained more precisely at Belle2 in early year of running

We are studying **q^2** distribution as a NP analyzer:

Ex.
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\bar{B} \to D^*\tau\bar{\nu})/dq^2}{d\mathcal{B}(\bar{B} \to D^*\ell\bar{\nu})/dq^2} \cdot \left(1 - \frac{m_\tau^2}{q^2}\right)$$

* Additional factor is imposed for our convenience

χ^2 : 15.1/14, p = 36.9% $D\ell$

[BABAR, arXiv:1303.0571]

Near future prospect

[Work in progress by Sakaki, Tayduganov, Tanaka &RW]

Already measured "distribution"

BABAR has studied q² distribution: $d\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu})/dq^2$

* will be obtained more precisely at Belle2 in early year of running

We are studying **q^2** distribution as a NP analyzer:

Ex.
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\bar{B} \to D^*\tau\bar{\nu})/dq^2}{d\mathcal{B}(\bar{B} \to D^*\ell\bar{\nu})/dq^2} \cdot \left(1 - \frac{m_\tau^2}{q^2}\right)$$

* Additional factor is imposed for our convenience

Suppose the central experimental value of R(D) & R(D*) from recent data, then the best fit value of Cx is obtained as follows:

 $C_{S_2} = -1.62 \pm 0.52i$, with $C_{X \neq S_2} = 0$ $C_T = 0.29 \pm 0.16i$, with $C_{X \neq T} = 0$

[BABAR, arXiv:1303.0571]

• Best fit value predict different shape of distribution

Preliminary

Theoretical uncertainty

Expected error at 10 ab^{-1} with $\varepsilon_{\text{efficiency}} \sim \mathcal{O}(10^{-4})$

· Best fit value predict different shape of distribution

Preliminary

Theoretical uncertainty

Expected error at 10 ab^{-1} with $\varepsilon_{\text{efficiency}} \sim \mathcal{O}(10^{-4})$

• Best fit value predict different shape of distribution

Preliminary

 $\cdot R(q^2)$ distribution can distinguish between scalar- & tensor-like contribution

Integrated luminosity	$\chi^2/N_{\rm bins}$
$426\mathrm{fb}^{-1}$	10
$10 {\rm ab}^{-1}$	225

* Simulation of fake "data" vs "model"

Review on tauonic B decays

- B \rightarrow D(*) $\tau \nu$: Large deviation from SM & type2-2HDM prediction
- $B \rightarrow \tau \nu$: Good agreement with SM

New physics

- Several effective operators (vector, scalar, tensor) can explain data
- "Unusual" 2HDM & LQM are in good agreement with data in BightarrowD(*) au u

Observables

- Asymmetry, polarization, distribution are useful to test NP contribution
- CP violation is available using asymmetry

Near future prospects

 - q² distribution will be obtained in relatively near future and sensitive to NP contributions

Back up

Vcb determination

$$\left(\bar{B} \to D\ell\bar{\nu}\right) \quad \frac{d\Gamma}{dw}(\bar{B} \to D\ell\bar{\nu}) = \frac{G_F m_B^5}{48\pi^3} r^3 (1+r)^2 (w^2 - 1)^{3/2} V_1(w)^2 |V_{cb}|^2$$

- Fit the shape (=interaction type) and the hight (=coupling)
- Shape is parametrized by HQET [Caprini et.al. (1996)] Shape : $V_1(w) = V_1(1) \left[1 - 8\rho_1^2 z + (51\rho_1^2 - 10)z^2 - (252\rho_1^2 - 84)z^3 \right]$ Hight : $V_1(1)|V_{cb}|$ $\left(z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \right)$

Fit result: $V_1(1)|V_{cb}| = (4.26 \pm 0.07 \pm 0.14) \times 10^{-2}$ $\rho_1^2 = 1.186 \pm 0.055$

|Vub| determination from a fit to CKM unitarity

 $|V_{ub}| = (3.38 \pm 0.15) \times 10^{-3}$

Average values

	Average	CKM fit
$\mathcal{B}(\bar{B} \to \tau \bar{\nu}) \times 10^4$	1.41 ± 0.23	1.14 ± 0.23
$ V_{ub} \times 10^3$	4.18 ± 0.53	3.38 ± 0.15

	Average	SM SM
R(D)	0.421 ± 0.058	0.297 ± 0.017
$R(D^*)$	0.337 ± 0.025	0.252 ± 0.003
correlation	-0.19	-

- * Belle result is obtained by our private calculation
- * So, Belle result here is different from that shown in main slide

Experimental analysis @BABAR

[BABAR, arXiv:1205.5442]

- * Decay channel BABAR analyzed: $\bar{B} \rightarrow D^{(*)}(\tau \rightarrow \ell \bar{\nu} \nu) \bar{\nu}$
- * inv. mass of missing particles:

$$m_{\rm miss}^2 = (p_{e^+e^-} - p_{\rm tag} - p_{D^{(*)}} - p_{\ell})^2$$

- **1.** $B_{\text{tag}}, D^{(*)}, \ell$ are identified
- 2. $m_{\rm miss}^2$ distribution is measured
- 3. Comparing total event data with expected signal & background, signal event is extracted

Belle & Belle2

Belle...

Belle result was reported, but it is not fully completed...
 We are now waiting for the upgrade.

Super KEKB

- Tauonic B meson decay is one of the golden modes in future super B factory, due to its large statistics.
- Large statistics enable us to measure not only total rate, but also some distributions & polarizations

Manuel Franco Sevilla

Note:

As explained, we must expect the signal event, to extract from the total event including the background event.

Thus, this result depends on the model parameters.

Lepto Quark model

- LQs are particles, carrying both baryon & lepton number. Thus, they couple to quark-lepton pair.
- LQ particles are expected to exist in various NP models; (ex: SU(5)-GUT, SO(10)-GUT, composite models, and so on)

SLQ ---->

Mass bounds on LQs from LHC

 Scalar LQ:
 $M_{\rm SLQ_3} \gtrsim 530 {\rm GeV}$ [ATLAS & CMS (2013)]

 Vector LQ:
 $M_{\rm VLQ_3} \gtrsim 760 {\rm GeV}$ [CMS (2013)]

Lagrangian relevant for b->ctv, with general dimensionless SU(3)xSU(2)xU(1) invariant couplings of scalar & vector LQs:

 $\mathcal{L}_{F=0}^{\mathrm{LQ}} = \left(h_{1L}^{ij} \,\overline{Q}_{iL} \gamma^{\mu} L_{jL} + h_{1R}^{ij} \,\overline{d}_{iR} \gamma^{\mu} \ell_{jR}\right) U_{1\mu} + h_{3L}^{ij} \,\overline{Q}_{iL} \boldsymbol{\sigma} \gamma^{\mu} L_{jL} \boldsymbol{U}_{3\mu}$ $+ \left(h_{2L}^{ij} \,\overline{u}_{iR} L_{jL} + h_{2R}^{ij} \,\overline{Q}_{iL} i \sigma_2 \ell_{jR}\right) R_2 \,,$

 $\mathcal{L}_{F=-2}^{\mathrm{LQ}} = \left(g_{1L}^{ij} \,\overline{Q}_{iL}^c i\sigma_2 L_{jL} + g_{1R}^{ij} \,\overline{u}_{iR}^c \ell_{jR}\right) S_1 + g_{3L}^{ij} \,\overline{Q}_{iL}^c i\sigma_2 \boldsymbol{\sigma} L_{jL} \boldsymbol{S}_3$ $+ \left(g_{2L}^{ij} \,\overline{d}_{iR}^c \gamma^{\mu} L_{jL} + g_{2R}^{ij} \,\overline{Q}_{iL}^c \gamma^{\mu} \ell_{jR}\right) V_{2\mu} ,$

S,R: scalar LQ U,V: vector LQ

VLQ WWW

Tau polarization

Tau has rich features compared with light leptons.
 Its helicity can vary depending on the type of the interaction.

* In SM,
$$P_{\tau} = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \simeq 0.325$$

- * NP can influence the tau helicity in $B \rightarrow D(*) Tv$
- * Pt is measurable without knowing t momentum
 & we estimated expected error δPt~0.04 at super KEKB
 [Tanaka & RW, arXiv:1005.4306]
- Definition:

$$P_{\tau}(D) = \frac{\Gamma^{+}(D) - \Gamma^{-}(D)}{\Gamma^{+}(D) + \Gamma^{-}(D)} \qquad P_{\tau}(D^{*}) = \frac{\Gamma^{+}(D^{*}) - \Gamma^{-}(D^{*})}{\Gamma^{+}(D^{*}) + \Gamma^{-}(D^{*})}$$

 $\Gamma^{\pm}(D)$ is decay rate of B->Dtv with tau helicity to be $\pm \frac{1}{2}$

Tau polarization

Correlation of R(D) & PT:

* PT & R are correlated

* Nontrivial strong correlation for S1,2 due to spin conservation

How to distinguish NP:

#. If $R(D)\&R(D^*)$ are precisely measured, we can predict PT in each NP case

Correlations

We can distinguish the type in part if we measure them more precisely.

Kinematics in multi-pion decay of tau

