Mixing Induced CP violation in B_s

Marina Artuso On behalf of LHCb, including results from other collaborations

Outline

- Theoretical motivation
- Experimental method
- \Box The semileptonic asymmetry a_{sl}^s
- \Box The angle Φ_s
- Conclusions and outlook

B_s mixing and new physics

- How can new physics manifest itself in beauty decays?
 - One hypothesis: assume that tree level diagrams are dominated by Standard Model contributions and loop diagrams can include measurable contributions mediated by new particles

The Forward Direction at the LHC

 In the forward region at LHC the bb production σ is large
 The hadrons containing the b & b quarks are both likely to be in the acceptance. Essential for "flavor tagging"
 LHCb uses the forward direction where the B's are moving with

- considerable momentum ~100 GeV, thus minimizing multiple scattering
- At L=4x10³²/cm²/s, we get ~10¹² B hadrons in 10⁷ sec in the LHCb acceptance.

Measured cross section at 7 TeV in LHCb acceptance is ~90 μb

CP violation in **B**_s mixing

Time evolution of Flavor Eigenstates

$$i\frac{d}{dt}\begin{pmatrix}B_{s}^{0}\\\bar{B}_{s}^{0}\end{pmatrix} = \begin{pmatrix}M_{11}^{s} - i\frac{\Gamma_{11}^{s}}{2} & M_{12}^{s} - i\frac{\Gamma_{12}^{s}}{2}\\M_{12}^{s*} - i\frac{\Gamma_{12}^{s*}}{2} & M_{22}^{s} - i\frac{\Gamma_{22}^{s}}{2}\end{pmatrix}\begin{pmatrix}B_{s}^{0}\\\bar{B}_{s}^{0}\end{pmatrix}$$

Mass eigenstates $\begin{cases} \left| B_{sL}^{0} \right\rangle = p \left| B_{s}^{0} \right\rangle + q \left| \overline{B}_{s}^{0} \right\rangle \\ \left| B_{sH}^{0} \right\rangle = p \left| B_{s}^{0} \right\rangle - q \left| \overline{B}_{s}^{0} \right\rangle \end{cases}$

The flavor specific asymmetry

$$a^{s} = \frac{1 - \left|\frac{q}{p}\right|^{4}}{1 + \left|\frac{q}{p}\right|^{4}} = \operatorname{Im}\left(\frac{\Gamma_{12}^{s}}{M_{12}^{s}}\right) + O\left(\left(\operatorname{Im}\frac{\Gamma_{12}^{s}}{M_{12}^{s}}\right)^{2}\right) = \left|\frac{\Gamma_{12}^{s}}{M_{12}^{s}}\right| \sin \phi_{12}^{s}$$

We can access *a^s* by measuring asymmetries in flavor specific final states, for example semileptonic decays.

$$a_{sl}^{s} = \frac{\Gamma(\overline{B}_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu) - \Gamma(B_{s}^{0} \rightarrow D_{s}^{+}\mu^{-}\overline{\nu})}{\Gamma(\overline{B}_{s}^{0} \rightarrow D_{s}^{-}\mu^{+}\nu) + \Gamma(B_{s}^{0} \rightarrow D_{s}^{+}\mu^{-}\overline{\nu})} = \frac{1 - (1 - a_{s})^{2}}{1 + (1 - a_{s})^{2}} \sim a^{s}$$

Standard Model predictions

 $\begin{cases} a_{sl}^s = (1.9 \pm 0.3) \times 10^{-5} \\ a_{sl}^d = (-4.1 \pm 0.6) \times 10^{-4} \end{cases}$

A.Lenz arXiv:1205.1444 LHCb measurement of a^s

Phys.Lett. B728 (2014)607/arXiv:1308.1048

Key analysis points

Phys.Lett. B728 (2014)607 arXiv:1308.1048

□Final states studied

 $D_{s}^{\pm}\mu^{\mp}, D_{s}^{\pm} \rightarrow \varphi \pi^{\pm}$ \Box Analysis in two binning schemes in μ kinematics (p, p_{t}, ϕ) & (p, p_{x}, p_{y}) \Box Efficiencies determined with dedicated data samples

Backgrounds estimated mostly from data 447 pb⁻¹ collected with magnet polarity UP and 595 pb⁻¹ collected with magnet polarity DOWN (1/3 of RUN I data)

LHCb Result

Phys.Lett. B728 (2014)607/arXiv:1308.1048

$a_{sl}^s =$	$(-0.06 \pm 0.50 \pm 0.36)\%$
--------------	-------------------------------

Source of systematic uncertainty	[ơ(a_{sl}^{s})(%)]
Signal modeling and muon corrections	0.14
Stat. uncertainty on muon e	0.16
Background subtraction	0.10
Asymmetry in track reconstruction	0.26
Varying conditions between field up and down	0.02
Software trigger bias	0.10
total	0.36

LHCb results on 3fb⁻¹ data sample will be available soon

CPV in $B_s \rightarrow J/\psi X$

□ Small CPV expected (note small theoretical errors!) ⇒ good place for NP to appear

$\frac{LHCb}{MCO}$ CP violation in B_s \rightarrow J/ ψ K+K⁻

12

- $\Box B_{s} \rightarrow J/\psi \ K^{+}K^{-} \text{ predominantly } J/\psi \phi$
- □small non-resonant component with KK in s-wave
- □Angular analysis necessary to disentangle CP even and CP odd final states
- $\Box B_s$ flavor tagging needed

LHCb Fitting method

PRD 87 (2013)112010,arXiv:1304.2600

Unbinned maximum likelihood fit in 4 dimensions: B_s proper time and 3 helicity angles θ_K,θ_μ, and φ_h
 Different lifetimes for CP odd and even components: ΔΓ_s ≡ Γ_L - Γ_H

$B_s \rightarrow J/\psi \phi$ angular and decay time projections PRD 87 (2013)112010,arXiv:1304.2600

LHCb results

□ From the 1fb⁻¹ data set, LHCb obtains:

PRD 87 (2013)112010,arXiv:1304.2600

 $\Phi_{s} = +0.07 \pm 0.09 \pm 0.01 \, rad$ $\Gamma_{s} = 0.663 \pm 0.005 \pm 0.006 \, ps^{-1}$ $\Delta\Gamma_{s} = 0.100 \pm 0.016 \pm 0.003 \, ps^{-1}$

EXPO ATLAS Φ_s measurement

ATLAS-CONF-2013-039

Unbinned using red measure mass an uncertair and the candidate

□ Unbinned maximum likelihood fit
using reconstructed mass,
measured proper time, measured
mass and proper time
uncertainty, the tag probability
and the helicity angles of the B_s
candidates gives:
$$\Phi_s = +0.12 \pm 0.25 \pm 0.11 rad$$
$$\Gamma_s = 0.677 \pm 0.007 \pm 0.003 ps^{-1} 0.02$$
$$ps^{-1} 0.02$$
$$ps^{-1} 0.15 - 1 - 0.5 0 0.5 1 1.5$$
$$\phi_s^{J/\psi\phi} [rad]$$

 $\Delta\Gamma_{\rm s}$ constrained to > 0

Marina Artuso FPCP 2014 Marseille

68% C.L. 90% C.L.

$\frac{HC}{CPV in B_s} \rightarrow J/\psi \pi^+ \pi^-$

J/ $\psi f_0(980)$ suggested as being a useful state for measuring Φ_s as it is a CP-eigenstate [stone,Zhang, PRD 79(2009)074024] \Rightarrow no need of angular analysis.

Extended to CP odd S-wave π⁺π⁻ final state gives [PLB 713 (2012)]378,arXiv:1204.5675]

$$\Phi_{s} = -19^{+173+4}_{-174-3} mrad$$

Is the f₀ a tetraquark? If so, things are not so simple! [Fleisher, Knegjens, Ricciardi, arXiv:1109.1112]

What is the true nature of the f_0 ? The clue from $B^0 \rightarrow J/\psi \pi \pi$

arXiv:1404.5673

LH

More details in Darya Savrina's talk

 Ratio between f₀(980) and f₀(500) elucidates nature of f₀(980)

Stone, Zhang, PRL 111(2013)062001, arXiv:1305.6554

The $f_0(980)$ meson is not seen in $B^0 \rightarrow J/\psi \pi^+\pi^- \Rightarrow$ inconsistent with having a tetraquark substructure at the eight standard deviation level.

 Mixing angle with f₀(500)< 17° at 90% CL

Measurement of Φ_s in $B_s \rightarrow J/\psi \pi^+\pi^-$

arXiv:1405.4140

- LHCb constructs a model for this decay considering a superposition of 5 final state ππ resonances + (possibly) non-resonant component
- CP even and CP odd components
 disentangled with angular analysis

For each resonant (+ nonresonant) final state:

General expression of time dependent decay rates:

$$\Gamma(t) = \mathcal{N}e^{-\Gamma_s t} \left\{ \frac{|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta\Gamma_s t}{2} + \frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m_s t) - \mathcal{R}e(\mathcal{A}^*\overline{\mathcal{A}}) \sinh \frac{\Delta\Gamma_s t}{2} - \mathcal{I}m(\mathcal{A}^*\overline{\mathcal{A}}) \sin(\Delta m_s t) \right\}$$

$$\overline{\Gamma}(t) = \left| \frac{p}{q} \right|^2 \mathcal{N}e^{-\Gamma_s t} \left\{ \frac{|\mathcal{A}|^2 + |\overline{\mathcal{A}}|^2}{2} \cosh \frac{\Delta \Gamma_s t}{2} - \frac{|\mathcal{A}|^2 - |\overline{\mathcal{A}}|^2}{2} \cos(\Delta m_s t) - \mathcal{R}e(\mathcal{A}^*\overline{\mathcal{A}}) \sinh \frac{\Delta \Gamma_s t}{2} + \mathcal{I}m(\mathcal{A}^*\overline{\mathcal{A}}) \sin(\Delta m_s t) \right\}$$

$$\mathcal{A} \equiv A_f \text{ and } \overline{\mathcal{A}} \equiv \frac{q}{p}\overline{A}_f \text{ Decay amplitudes}$$

Analysis Method

Data set: 3 fb⁻¹ (total of run 1 data) (~27100 signal events) Only events within ±20 MeV of B_s mass peak are used in CP violation fit

CP even and odd decay amplitudes measured simultaneously

Marina Artuso FPCP 2014 Marseille

Results

arXiv:1405.4140

□ Mixing induced CPV phase Φ_s=(70±68±8) mrad

 Note statistical error smaller than error from combined J/ψKK and J/ ψππ fit in 1 fb⁻¹ data

- □ Presence of sin(Φ_s) can be discerned from backgroundsubtracted tagged yields as a function of decay time
- Current naïve average of LHCb J/ψKK and J/ψππ data would give UNOFFICIAL AVERAGE

$$\Phi_{s} = 70 \pm 54 \pm 8 mrad$$

Red curve: expectation for Φ_s = 70 mrad

Current ϕ_s measurements

The future

In order to develop a complete picture we need more statistics! The LHCb upgrade is clearly needed to reach a firm conclusion.

Our knowledge of key parameters of CPV in Bs mixing has increased a lot but much more is yet to come!

Charles et al.,arXiv:1309.2293

Summary of Φ_s and $\Delta\Gamma_s$ measurements

	$\Phi_{\sf s}$ (mrad)	$\Delta\Gamma_{ m s}(m ps^{-1})$
LHCb (3fb ⁻¹ J/ψ π ⁺ π ⁻)	70±68±8	
LHCb (Moriond)	70±90±10	0.100±0.016±0.003
ATLAS	120±250±110	0.053±0.021±0.009
CMS	-	0.048±0.024±0.003
CDF	-600 - 120	0.068±0.026±0.009
D0	560	0.179±0.060

Transversity

$d^4\Gamma(B^0_s \to J/\psi\phi) = d^4\Gamma \propto \sum_{h=0}^{10} h_{\mu}(t) f_{\mu}(0)$				
$\mathrm{d}t\mathrm{d}\cos\theta\mathrm{d}\varphi\mathrm{d}\cos\psi \equiv \frac{1}{\mathrm{d}t\mathrm{d}\Omega} \propto \sum_{k=1}^{\infty} h_k(t) f_k(\Omega)$				
\boldsymbol{k}	$h_k(t)$	$f_k(heta,\psi,arphi)$		
1	$ A_0 ^2(t)$	$2\cos^2\psi\left(1-\sin^2 heta\cos^2\phi ight)$		
2	$ A_{\parallel}(t) ^2$	$\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$		
3	$ A_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$		
4	$\Im(A_{\parallel}(t) A_{\perp}(t))$	$-\sin^2\psi\sin2 heta\sin\phi$		
5	$\Re(A_0(t)A_{\parallel}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$		
6	$\Im(A_0(t)A_{\perp}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin 2\theta \cos \phi$		
7	$ A_{s}(t) ^{2}$	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$		
8	$\Re(A_s^*(t)A_{\parallel}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin2\phi$		
9	$\Im(A_s^*(t)A_{\perp}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$		
10	$\Re(A_s^*(t)A_0(t))$	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$		

 μ^+ y φ K^+ x B_s $K^ \psi$

$$\begin{aligned} & \text{Transversity} \text{I} \\ & |A_0|^2(t) = |A_0|^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)], \\ & |A_{\parallel}(t)|^2 = |A_{\parallel}|^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)], \\ & |A_{\perp}(t)|^2 = |A_{\perp}|^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)], \\ & (A_{\parallel}^*(t)A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos(\delta_{\perp} - \delta_{\perp}|)\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t)], \\ & \Re(A_0^*(t)A_{\parallel}(t)) = |A_0||A_{\parallel}|e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{0})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos(\delta_{\perp} - \delta_{0})\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ & \Re(A_0^*(t)A_{\perp}(t)) = |A_0||A_{\perp}|e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{0})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos(\delta_{\perp} - \delta_{0})\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ & |A_s(t)|^2 = |A_s|^2 e^{-\Gamma_s t} [\cos \left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sin \left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t), \text{ only term for } f=f_{op} \\ & \Re(A_s^*(t)A_{\parallel}(t)) = |A_s||A_{\parallel}|e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta m t)], \\ & \Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta m t)], \\ & \Re(A_s^*(t)A_{0}(t)) = |A_s||A_{0}|e^{-\Gamma_s t} [-\sin(\delta_{0} - \delta_{s})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta m t)], \\ & \Re(A_s^*(t)A_{0}(t)) = |A_s||A_{0}|e^{-\Gamma_s t} [-\sin(\delta_{0} - \delta_{s})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin(\delta_{0} - \delta_{s})\cos\phi_s \sin(\Delta m t) + \cos(\delta_{0} - \delta_{s})\cos(\Delta m t)]. \end{aligned}$$