First studies with SusHi+2HDMC in CMS

Konstantin Kanishchev

HZZ2l2q group

Outline

- Introduction
 - Formulating the task
 - Tools in hands
- Parameter scans
 - ► The grid in parameter space
 - "2HDM explorer"
- 3 Benchmark points
 - Definition of a "benchmark point"
 - Some examples
- Kinematic distributions and MC reweighting
- Conclusions

2HDM has a large parameter space with many phenomenological possibilities.

Theoretical constraints

• Stability, unitarity, perturbativity, CP-conservation.

Experimental constraints

- 1 We already have one higgs!
 - $m_h = 126 \, GeV$, CP-even (predominantly)
 - $\triangleright \sigma \cdot Br$ for several channels
 - ? $\Gamma_h \simeq 4.3 MeV$?
- **2** We already have constraints on "heavy SM-like resonanse"
- 3 Oblique electroweak parameters: S, T, U, V, W, X
- 4 Constraints on $M_{H^{\pm}}$, light M_A 5 LEP, Tevatron, e.t.c.

Current goal

Constrain 2HDM parameter space with 1 and 2

Tools

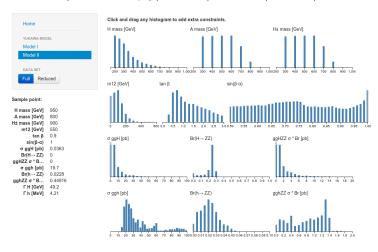
2HDMC: Eriksson, Rathsman, Stål [0902.0851]

- Implements almost all thinkable constraints
 - Only stability, unitarity and perturbativity applied for now.
- Calculates widthes and branchings for scalars
 - ▶ I have some python bindings for it

SusHi: Harlander, Lieber, Mantler [1212.3249]

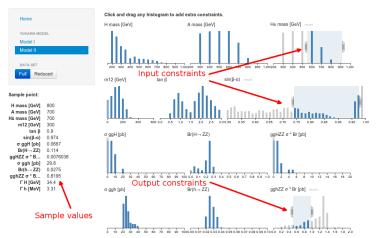
- Calculates cross-sections, based on 2HDMC output.
 - Runs on GRID (so one can crunch hundreds of thousands of points).

Parameter scans grid


```
M_h fixed to 126 GeV Yukawa Model I, Model II sin(\beta-\alpha)~0.5-1.0, step 0.0125 tan\beta~0.1-3.0, step 0.2 m_{12}~0~{\rm GeV}-600~{\rm GeV}, step 50 GeV M_{H^\pm}~300~{\rm GeV}-1000~{\rm GeV}, step 100 M_A~300~{\rm GeV}-1000~{\rm GeV}, step 100 M_H~200~{\rm GeV}-1000~{\rm GeV}, step 50
```

- $ho \simeq 140000$ points per Yukawa model, passing the theoretical constraints
- For each point cross-sections for h and H are calculated with Sushi

"2HDM explorer"


A way to browse the whole scanned parameter space:
 "2HDM explorer": http://cern.ch/kkanishc/2HDM/home.shtml

"2HDM explorer"

A way to browse the whole scanned parameter space:
 "2HDM explorer": http://cern.ch/kkanishc/2HDM/home.shtml

Benchmark points

- As a start study some specific points in parameter space.
- Like in heavy resonance searches, it seems natural to have M_H as a scanning parameter
- Definition of a "benchmark point":

"Fixed" benchmark points

- Values of M_A , M_{H^\pm} , $\tan \beta$, $\sin(\beta \alpha)$ and m_{12} are fixed.
- And we provide σ 's and Br's as functions of M_H

"Floating" benchmark points

- Values of M_A , M_{H^\pm} , an eta, sin(eta-lpha) and m_{12} can also be functions of M_H
- And we provide σ 's and Br's as functions of M_H

"Fixed" benchmark point example

Model I

M_A		500 GeV			
$M_{H^{\pm}}$		600 GeV			
m_{12}		100 GeV			
taneta		0.7			
$sin(\beta-lpha)$		0.95			
M_H	200 GeV	300 GeV	400 GeV	500 GeV	
$\sigma(ggH)$	7.83 pb	3.68 pb	3.16 pb	Not allowed	

IVIH	200 GC V	300 GC V	100 000	300 GCV
$\sigma(ggH)$	7.83 pb	3.68 pb	3.16 pb	Not allowed
Br(H o ZZ)	0.249	0.288	0.126	Not allowed
$\sigma \cdot Br(H o ZZ)$	1.94 pb	1.06 pb	0.39 pb	Not allowed
Γ_H	0.15 GeV	0.89 GeV	6.1 GeV	Not allowed
$\sigma(ggh)$	38 pb	38 pb	38 pb	Not allowed
Br(h o ZZ)	0.012	0.012	0.012	Not allowed
$\sigma \cdot Br(h \rightarrow ZZ)$	0.46 pb	0.46 pb	0.46 pb	Not allowed

"Floating" benchmark point example

Model I

M_A	500 GeV 600 GeV		GeV		
$M_{H^{\pm}}$	600 GeV		700 GeV		
m_{12}	50 GeV	100	GeV	150 GeV	
taneta	0.	.3	0.5		
$sin(\beta - \alpha)$	0.897				

M_H	200 GeV	300 GeV	400 GeV	500 GeV
$\sigma(ggH)$	47 pb	22.1 pb	5.37 pb	2.29 pb
Br(H o ZZ)	0.23	0.29	0.145	0.112
$\sigma \cdot Br(H o ZZ)$	10.8 pb	6.45 pb	0.78 pb	0.256 pb
Γ_H	0.15 GeV	1.72 GeV	10.4 GeV	29.3 GeV
$\sigma(ggh)$	107 pb	107 pb	60.9 pb	60.9 pb
Br(h o ZZ)	0.004	0.004	0.0071	0.0071
$\sigma \cdot Br(h \rightarrow ZZ)$	0.44 pb	0.44 pb	0.43 pb	0.43 pb

Another "floating" example

Model II

M_A	600 GeV			
$M_{H^{\pm}}$	700 GeV			
m_{12}	150 GeV	150 GeV	250 GeV	300 GeV
taneta	1.3	1.7	2.1	2.3
$sin(\beta - \alpha)$	0.526	0.615	0.718	0.731
M _H	200 GeV	300 GeV	400 GeV	500 GeV
$\sigma(ggH)$	1.3 pb	0.568 pb	0.354 pb	0.166 pb
Br(H o ZZ)	0.257	0.3	0.291	0.275
$\sigma \cdot Br(H o ZZ)$	0.334 pb	0.17 pb	0.103 pb	0.046 pb
Γ_H	1.04 GeV	5.37 GeV	12.9 GeV	28.5 GeV
$\sigma(ggh)$	29 pb	24.7 pb	23.5 pb	22.7 pb
Br(h o ZZ)	0.014	0.015	0.0189	0.0169
$\sigma \cdot Br(h \rightarrow ZZ)$	0.4 pb	0.37 pb	0.444 pb	0.383 pb

Moving on...

After one fixes the benchmark point:

- 1 Obtain kinematic distributions.
- 2 Do event-by event reweighting of the "SM-like" MC's
- **3** Redo the exclusion plot (shape analysis with reweighted $M_{2\ell 2q}$ histogram)

Getting distributions (1) from SusHi?

```
Block DISTRIB
1
              # distribution : 0 = sigma_total, 1 = dsigma/dpt, 2 = dsigma/dy, 3 = d^2sigma/dy/dpt
                               (values for pt and v: 22 and 32)
              # pt-cut: 0 = no, 1 = pt > ptmin, 2 = pt < ptmax, 3 = ptmin < pt < ptmax</pre>
      3
              # minimal pt-value ptmin in GeV
     30.d0
              # maximal pt-value ptmax in GeV
    100.d0
              # rapidity-cut: 0 = no. 1 = Abs[v] < vmax. 2 = Abs[v] > vmin. 3 = vmin < Abs[v] < vmax
31
     0.5d0
              # minimal rapidity ymin
32
      1.5d0
              # maximal rapidity ymax
              # 0 = rapidity, 1 = pseudorapidity
```

- ↑ Is this right?
- Would it be $\int_{30}^{100} dp_{\perp} \int_{0.5}^{1.5} d\eta \, \frac{d^2\sigma}{dp_{\perp}d\eta}$?
- Still, looks tedious...

Conclusions/Plans/Discussion

Plans:

- Have whole toolchain ready.
- ? Other channels (already have some data to process).
- ? Cross-checks.

Things to agree on:

- Fix a set of prior constraints that should be imposed.
- Together with "windows" for quantitative values.
 - E.g. Can I have $\sigma(gg \to h) \cdot Br(h \to ZZ) \simeq 0.4[pb]$?
 - E.g. Can I have $\Gamma_h \simeq 20[MeV]$?
- Benchmark points:
 - ▶ Employing M_H as a "scanning parameter" ?
 - ▶ Allowing 2HDM parameters to change (slightly) with M_H ?

