Mimosa 16: « final results » 14 & 20 µm Mimosa 18: preliminary results

A.B. on behalf of IPHC-Strasbourg/CEA-Saclay

- Mimosa-16 14 μm and 20 μm digital and analog output
- Mimosa 18

Mimosa 16

EUDET Meeting, DESY, January 30-31 2008

Mimosa 16 lab-tests

test beam conditions

- CERN SPS:
 - 120 GeV pions beam, burst: 4.8 s + 12 s dead time
- DAQ:
 - trigger: 2000-4000 events/burst
 - data: 600 recorded events/burst
 - read-out freq:
 - > analog: 2.5 MHz (50 µs read-out time)
 - digital: 20 MHz by 8 columns (50 µs read-out time)

Mimosa-16 14 µm – digital Test beam

MIMOSA 16 « 14 μ m » DIGITAL

- Running @ different Discri thresholds (mV)
 - Efficiency
 - Multiplicity
 - Fake rate
 - Resolution

Th.	Resolution (μm)								
	S	1	S	2	S	3	S4		
	U	V	U	V	U	V	U	Ý	
3.0	N.A.	N.A.	6.41±0.06	6.56 ± 0.07	6.69±0.06	6.38±0.07	6.01 ±0.07	5.60 ± 0.07	
3.5	N.A.	N.A.	6.21±0.06	6.09±0.06	6.48±0.06	6.11±0.06	5.74 ± 0.06	5.24 ± 0.06	
4.0	N.A.	N.A.	$5.93 {\pm} 0.05$	$5.80 {\pm} 0.05$	6.05±0.05	6.09±0.05	5.04 ± 0.06	4.74±0.05	
4.6	N.A.	N.A.	5.74 ± 0.05	5.76 ± 0.06	6.02 ± 0.06	6.00±0.06	4.96 ± 0.05	4.64 ± 0.05	
5.0	N.A.	N.A.	5.71±0.06	5.71±0.06	5.66 ± 0.05	5.79±0.05	4.88 ± 0.05	4.68±0.05	
6.0	N.A.	N.A.	5.77±0.07	5.64±0.06	5.59±0.06	5.71±0.07	4.64 ± 0.05	4.64±0.06	
7.0	N.A.	N.A.	5.60 ± 0.07	5.55 ± 0.06	5.52 ± 0.06	5.51 ± 0.06	4.75 ± 0.05	4.68 0.05	
7.8	N.A.	N.A.	5.52 ± 0.08	5.42 ± 0.08	5.46±0.09	5.40 ± 0.09	4.91 ± 0.05	4.70 ± 0.06	
10.0	N.A.	N.A.	5.10 ± 0.13	5.02 ± 0.12	5.00 ± 0.11	5.50 ± 0.13	5.13 ± 0.07	5.14 ± 0.07	

TAB. 4 – Digital : Resolutions pour MIMOSA-16 "14 μm "

Threshold		Average N		
(mV)	S1	S2	S3	S4
3.0±0.10	1.81±0.06	5.75 ± 0.07	4.96±0.06	7.43±0.11
3.5 ± 0.10	1.91 ± 0.08	4.88±0.06	4.25 ± 0.05	6.22±0.09
4.0±0.10	2.07 ± 0.10	$3.48 {\pm} 0.04$	3.11 ± 0.03	5.14 ± 0.07
4.6±0.10	1.87 ± 0.14	2.98 ± 0.04	2.69 ± 0.03	4.46±0.06
5.0 ± 0.10	2.04±0.16	2.67 ± 0.04	2.46 ± 0.03	4.00±0.06
6.0±0.10	1.84 ± 0.18	2.24 ± 0.03	2.18 ± 0.04	3.57 ± 0.06
7.0±0.10	1.62 ± 0.19	2.04 ± 0.03	1.96 ± 0.03	2.88 ± 0.04
7.8±0.10	1.96±0.29	2.00 ± 0.04	1.96±0.05	$2.54{\pm}0.04$
10.0 ± 0.10	1.96±0.29	1.88 ± 0.06	1.87 ± 0.05	2.14 ± 0.04

TAB. 5 – Digital : Average hit multiplicity pour MIMOSA-16 "14 μm "

• Pure digital position: pitch / $\sqrt{12} = 7.2 \ \mu m$ Center of Gravity method: ~< 5 \ \mu m

0	0	0	0	0
0	0	1	0	0
0	1	1	1	0
0	1	1	0	0
0	0	0	0	0

Threshold				
(mV)	S1	S2	S3	S4
3.0 ± 0.10	21.86 ± 1.71	99.68 ± 0.07	99.08 ± 0.1	99.94 ± 0.04
3.5 ± 0.10	9.43 ± 1.21	99.07 ± 0.11	98.16 ± 0.15	99.96 ± 0.03
4.0 ± 0.10	6.33 ± 0.95	95.63 ± 0.25	92.33 ± 0.23	99.96 ± 0.03
4.6 ± 0.10	4.70 ± 0.90	90.69 ± 0.36	85.69 ± 0.40	99.94 ± 0.03
5.0 ± 0.10	3.44 ± 0.66	84.98 ± 0.45	78.66 ± 0.47	99.88 ± 0.05
6.0 ± 0.10	2.68 ± 0.47	72.68 ± 0.59	65.61 ± 0.62	99.79 ± 0.07
7.0 ± 0.10	1.54 ± 0.42	57.66 ± 0.63	51.87 ± 0.58	99.19 ± 0.13
7.8 ± 0.10	1.09 ± 0.16	44.87 ± 0.66	39.90 ± 0.74	98.43 ± 0.19
10.0 ± 0.10	0.05 ± 0.30	27.95 ± 0.74	24.40 ± 0.57	94.34 ± 0.41

TAB. 2 – Digital : Efficacités de détection pour MIMOSA-16 "14 μm "

Threshold	Fake rate /event/pixel								
(mV)	S1	S2	S3	S4					
3.0 ± 0.10	N.A.	7.56E-04±4.30E-06	7.65E-04±4.33E-06	5.51E-03+1.16E-05					
3.5 ± 0.10	N.A.	$1.84E-04\pm 2.30E-06$	2.97E-04±2.92E-06	130E-03±6.11E-86					
4.0±0.10	N.A.	$1.41E-05\pm6.62E-07$	3.55E-05±1.05E-06	$1.94E-04\pm 2.46E-06$					
4.6±0.10	N.A.	2.09E-06±2.47E-07	7.93E-06±4.82E-07	3.82E-05±1.06E-06					
5.0 ± 0.10	N.A.	1.75E-06±2.48E-07	3.27E-06±3.40E-07	1.53E-05±7.35E-07					
6.0±0.10	N.A.	1.24E-06±1.70E-07	9.58E-07±1.49E-07	6.29E-06±3.82E-07					
7.0±0.10	N.A.	4.92E-07±1.11E-07	5.95E-07±1.22E-07	$1.30E-06\pm1.81E-07$					
7.8±0.10	N.A.	2.19E-07±7.61E-08	3.83E-07±1.01E-07	9.35E-07±1.57E-07					
10.0 ± 0.10	N.A.	3.68E-07±9.34E-08	3.43E-07±9.03E-08	8.12E-07±1.39E-07					

TAB. 6 - Digital : Fake rate / pixel /event pour MIMOSA-16 "14 µm"

- S4: discri threshold optimal range
 - 4.6 mV:
 - ➤ eff = 99.94± 0.03
 - ➢ fake ~ 4 x 10⁻⁵
 - \geq Resolution ~ 5 μ m

- 5 mV:

- ▶ eff = 99.88± 0.05
- ▶ fake ~ 1.5 x 10⁻⁵
- \geq Resolution ~ 5 µm
- 6 mV
 - ≽ eff = 99.79± 0.07
 - ▶ fake ~ 6 x 10⁻⁶
 - \geq Resolution ~< 5 μ m

Mimosa-16 20 µm - digital

Mi	mosa-1	Ι6 20 μm	- digi	tal	Th.	Residu	ual (µı 4	m)
Efficiency – Roughly the same Multiplicity	N-wells epi.	mip substrate	1 4 μm		3.5 4.0 5.0 6.0 7.0 8.0	U 5.69 ± 0.10 5.29 ± 0.06 4.73 ± 0.06 4.84 ± 0.06 4.88 ± 0.05 4.95 ± 0.05	V 5.95±0.10 4.96±0.06 4.86±0.06 4.68±0.06 4.58±0.05 4.78±0.05	
 A bit nigner (thermal diffusion wider) Eako rato 	N-wells	mip	1	Threshold (mV) 3.5±0.10	S1 2.30±0.15	Average M S2 4.89±0.07	fultiplicity S3 4.28±0.06	S4 9.58±0.19
- ~ identical Resolution	epi.		20 μm	$\begin{array}{c} 4.0 \pm 0.10 \\ \hline 5.0 \pm 0.10 \\ \hline 6.0 \pm 0.10 \\ \hline 7.0 \pm 0.10 \end{array}$	$\begin{array}{r} 2.30 \pm 0.16 \\ 3.23 \pm 0.59 \\ 1.65 \pm 0.19 \\ 1.48 \pm 0.19 \end{array}$	$\begin{array}{c} 3.65 \pm 0.05 \\ 2.85 \pm 0.04 \\ 2.45 \pm 0.04 \\ 2.22 \pm 0.04 \end{array}$	3.21±0.04 2.55±0.04 2.28±0.03 2.12±0.04	6.88±0.10 6.01±0.10 4.43±0.07 3.49±0.05
 ~ identical 	*****	substrate		8.0±0.10	1.56 ± 0.28	2.10±0.04	2.12±0.04	3.08±0.04

TAB. 11 – Digital : Average hit multiplicity pour MIMOSA-16 "20 µm"

Threshold	Efficiency (%)							
(mV)	S1	S2	S3	S4				
3.5 ± 0.10	9.79 ± 0.62	98.93 ± 0.15	96.92 ± 0.24	99.79 ± 0.09				
4.0 ± 0.10	4.48 ± 0.31	94.62 ± 0.30	88.45 ± 0.37	99.89 ± 0.05				
5.0 ± 0.10	5.24 ± 0.93	81.84 ± 0.50	73.73 ± 0.55	99.94 ± 0.04				
6.0 ± 0.10	1.82 ± 0.20	67.88 ± 0.60	59.34 ± 0.56	99.71 ± 0.08				
7.0 ± 0.10	1.25 ± 0.16	48.06 ± 0.67	41.26 ± 0.56	99.45 ± 0.11				
8.0 ± 0.10	0.63 ± 0.11	37.44 ± 0.56	31.58 ± 0.49	98.55 ± 0.17				

•

•

•

•

TAB. 9 – Digital : Efficacités de détection pour MIMOSA-16 "20 µm" EUDET Meeting, DESY, January 30-31 2008

Threshold Fake rate /event/pixel S2 S3 S4 (mV) S1 2.35E-04±2.87E-06 1.16E-04±2.02E-06 2.36E-03±9.10E-06 N.A. 3.5±0.10 N.A. 2.48E-05±8.43E-07 8.10E-06±4.81E-07 4.0±0.10 2.16E-04±2.48E-06 N.A. 5.0±0.10 1.89E-06±2.04E-07 1.46E-06±1.79E-07 8.79E-05±1.39E-06 6.0±0.10 N.A. 1.16E-06±1.53E-07 1.06E-06±1.46E-07 8.98E-06±4.25E-07 N.A. 1.51E-06±1.80E-07 7.0±0.10 1.02E-06±1.48E-07 7.97E-07±1.31E-07 8.0±0.10 N.A. 5.65E-07±1.19E-07 6.94E-07±1.31E-07 1.59E-06±1.99E-07

TAB. 12 – Digital : Fake rate / pixel /event pour MIMOSA-16 "20 µm"

Mimosa-16 14 & 20 µm – digital : multiplicity (2 pixels in cluster).

- Can we take advantage of the highest multiplicity ?
 - Hit selection with at least 2 pixels in clusters

M16 digital: global comparison

- DIGITAL
 - 14 μm > 20 μm
 - 1 pixel > 2 pixels
- ANALOG
 - S/N(MPV) ~16-17

Chip	cluster	Threshold (mV)	Eff (%)	Fake rate
14 µm	1 pixel	4.6	99.94±0.03	4 x 10 ⁻⁵
14 µm	1 pixel	5	99.88±0.05	1.5 x 10 ⁻⁵
14 µm	1 pixel	6	99.79±0.07	6 x 10 ⁻⁶
14 µm	2 pixels	3	99.66±0.04	5 x 10 ⁻⁴
20 µm	1 pixel	4	99.89±0.05	2 x 10 ⁻⁴
20 µm	1 pixel	5	99.94±0.04	9 x 10 -5
20 µm	1 pixel	6	99.71±0.08	9 x 10 ⁻⁶
20 µm	2 pixels	3.5	99.79±0.09	1 x 10 ⁻⁴
20 µm	2 pixels	4	99.63±0.05	2 x 10 ⁻⁶

Chip	Run	Mtx	Eff(%)	Res	sidu	S/N(MPV)	Ν	Fake	Ch 1	Ch 9	Ch 25
$2(14\mu m)$	16503	S4	99.65±0.18	2.1	2.3	16.6±0.3	14.9		244	731	781
$2(14\mu m)$	16509	S4	99.93⊥0.07	2.4	2.5	17.1 ± 0.3	14.7		252	734	793
$12(14\mu m)$	16526	S4	99.85 ± 0.11	2.5	2.4	15.3 ± 0.3	15.4		240	712	746
$4(14\mu m)$	16532	S4	99.75±0.15	2.4	3.0	17.4 ± 0.3	14.6		260	744	811
$10(20\mu m)$	16510	S4	99.90 ± 0.10	2.2	2.3	16.6±0.3	14.6		253	850	1002

TAB. 15 – Analogique : résumé. Charges en électrons, résidus en μm .EUDET Meeting, DESY, January 30-31 2008Auguste Besson

Mimosa 18

Test beam:

Jérôme Baudot, Gilles Claus, Rita De Masi, Christina Dritsa, Wojciech Dulinski, Mathieu Goffe, Yolanta Sztuk-Dambietz.

- Thinning
- Efficiency
- Resolution

Mimosa 18

 High resolution sensor using AMS 0.35 µm OPTO CMOS process from IPHC 2006 engineering submission. Two types of epitaxy thickness: 14 µm and 20 µm

≻Pixel pitch: 10 µm

>2-transistors circuit, continuously biased diode

>Array size 512x512 pixels

➤Active surface: 5x5 mm²

Readout clock: 25 MHz max

Integration time: 3 ms(four parallel output channels)

Dark current < 1fA @room temperature

>Excellent yield: (100%, based on 21 tested devices, including two thinned to 50 μ m)

M18: Performances

- Excellent performances: (preliminary)
 - Noise: ENC ~ 9.8 electrons @room temperature
 - S/N (MPV) ~ 30 (27) for « $14\mu m \gg$ (« $20\mu m \gg$)
 - Efficiency ~ 99.85±0.15 % (prelim.)
 - (fake rate in progress)

EUDET Meeting,

M18: Resolution

Mimosa18 – tinned down to 50 µm and bonded to PCB

- Thinning of AMS 0.35 µm reticles
 - Thinning performed by APTEK (S.F. bay) via LBNL (STAR collab.)
 - Thickness claimed by provider : 50 μm
 - \succ measured with IPHC bonding machine ~ 50-70 μ m
 - Mimosa-18 (5.5x7.5mm²) and -17 mounted on PCB for test ⇒ keep them flat

Second gluing trial

- Tests with ⁵⁵Fe show no loss in performances (noise, gain)
- Tests of M-18 mounted on TAPI with 120 GeV π⁻ beam @CERN-SPS (Nov 07)
 ➢ No loss in performances observed: Eff ~99.8 ± 0.2 % (prelim)

> Thinning down to ~ 50 μ m seems on good track

EUDET Meeting, DESY, January 30-31 2008

Summary

- Mimosa-16: figures to keep in mind :
 - Digital: Eff ~ 99.9 % ; fake ~2 x 10⁻⁵ ; digital resolution ~5 μm ;
 - Analog: S/N(MPV) ~ 16-17 ; residual ~2.1-2.5 μm
 - « 14 µm » >~ « 20 µm » : comparable performances (larger clusters for 20 µm)
 ➤ Very satisfactory performances
- Mimosa-18
 - S/N(MPV) \sim 30
 - Eff >~ 99.85 ± 0.15 % (prelim)
 - Resolution ~ 1 \pm 0.1 μ m (prelim)
 - Best resolution ever obtained with CMOS chips
 - Technique of thinning down of MAPSs to 50 µm seems to be reliable & industrially available

Back up

mimosa 16, « 14 μm », « 20 μm », « bis »

mimosa 16

mimosa 16 bis

Sous-matrice	rice Diode Architecture du pixel		Sous-matrice	Différences par rapport à MIMOSA 16		
Nom : Pixel 1 Taille : 32 lig. x 33 col. Sorties Discriminées : 24	Taille : 1,7 μm x 1,7μm Forme : carrée Rad-tol : non	Taille : 1,7 μmAmpli : source followerTaille : 1,7 μmReset : reset par transistorx 1,7μmCharge de l'ampli :Forme : carréenormalRad-tol : nonCDS : capa MOS declamping		Diode : Taille : 3 µm x 3 µm Forme : ? Architecture du pixel : identique		
Nom : Pixel 2 Taille : 32 lig. x 33 col. Sorties Discriminées : 24	Taille : 2,4 µm x 2,4µm Forme : octogonale Rad-tol : non	Ampli : source follower Reset : reset par transistor Charge de l'ampli : normal CDS : capa MOS de clamping	Pixel 2	Diode : taille identique forme Architecture du pixel : identique		
Nom : Pixel 3 Taille : 32 lig. x 33 col. Sorties Discriminées : 24	Taille : 2,4 µm x 2,4µm Forme : octogonale Rad-tol : oui	Ampli : source follower Reset : reset par transistor Charge de l'ampli : normal CDS : capa MOS de clamping	Pixel 3	Diode : Taille : 3,5 µm x 3,5 µm Forme : ? Architecture du pixel : identique		
Nom : Pixel 4 Taille : 32 lig. x 33 col. Sorties Discriminées : 24	Taille : 4,5 μm x 4,5μm Forme : carrée Rad-tol : non	Ampli : source follower avec feedback Reset : self-biais diode Charge de l'ampli : améliorée CDS : capa MOS de clamping	Pixel 4	Diode : identique Architecture du pixel : ajout d'un abaisseur de tension avant la capacité de clamping pour améliorer ces performances.		

test beam conditions

- CERN SPS:
 - 120 GeV pions beam, burst: 4.8 s + 12 s dead time
- DAQ:
 - trigger: 2000-4000 events/burst
 - data: 600 recorded events/burst
 - read-out freq:
 - ➤ analog: 2.5 MHz (50 µs read-out time)
 - ≻ digital: 20 MHz by 8 columns (50 µs read-out time)
- Data
 - 35 runs (+Noise runs)
 - 262 Go (!)
 - 6 chips testés
 - ➤ 3 mimosa 16 « 14 µm »
 - ➤ 1 mimosa 16 « 20 µm »
 - ➤ 2 mimosa 16 bis

EUDET Meeting, DESY, January 30-31 2008