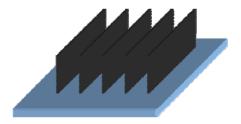
FP7 – Vertex slice

Preliminary Status – nothing is decided January 27th 2008

Ingrid-Maria Gregor, DESY

Overview


- Design, construction, commissioning and optimisation of the infrastructure required to integrate a lightweight, high resolution, multilayer vertex detector.
- The infrastructure will be optimised in terms of mechanics, data acquisition and general services to comply with the different sensor technologies under development.
- Overall performance for experiments at future LC
 - Accuracy, precision, pattern recognition, robustness, data throughput and vertexing

- 6 layers of pixels
- $\sim 10^7$ pixels
- providing ~9000frames/sec

Description of work

- Global mechanical structure outside of the acceptance will allow to mount devices independent of the sensor technology.
- Common mechanical interface needs to be defined for this purpose. An alignment system enables an easy integration of any type of ladder adapted to this interface.

- development of the data acquisition system from EUDET JRA1 to suit the new infrastructure. This will be accomplished in close collaboration with WP 10.2 (Common DAQ)
- producing a target system
- integrating the EUDET telescope upstream of the target

Description of Work I

Global Mechanical Structure

- Mechanical structure outside of the acceptance to mount devices independent of the sensor technology.
- Common mechanical interface needs to be defined.

Data Acquisition (Hardware and Software)

- focus on data throughput and multi-event data storage and maximum event rate,
- Could be handled by a dedicated board evolving from the EUDET telescope DAQ board.
- Care needs to be taken incorporating a central clock and time-stamp system (based on the proposed CALICE "Clock and Control for testbeam")
- Hardware based on the trigger logic unit (TLU) developed within EUDET. Also the necessary software will evolve from existing EUDET data acquisition software.

Description of Work II

Analysis Software

- reconstruction and analysis of data from the high resolution, low material vertex slice will be developed evolving from the EUTelescope
- functionality for calibration, alignment and offline data reduction as well as for pattern recognition and determination of the resolution

Target

- Jet-like particle showers will be produced from high energy particles hitting a target.
- will be constructed of a number of thin plates in which the impinging particles showers.
- Simulations will help to define the optimal geometry and material.
- Actuators enable the target to move in and out of the beam.

EUDET Telescope

by then existing final telescope will be positioned upstream of the target to provide precise information on incoming beam particles

Description of Work III

Reference System

- based on existing pixel sensor will be build to serve as a benchmark and to allow the development of the fully integrated facility at an early stage of the project
- The baseline module will rely on the Mimosa22+ sensor,
- □ For each layer a light weight mechanical structure will be designed. An effort will be made to limit the material to optimise the single point resolution.
- The pixel sensors and the data acquisition board will be interconnected by a light ultra-thin flexible cable. This cable design will be based on existing experience within the consortium