The LHC Control System CERN Accelerator Control System

Roman Gorbonosov on behalf of the Beams Department Controls Group Based on the input from M.Arruat, V.Baggiolini, JC.Bau, M.Buttner, P.Charrue, S.Deghaye, E.Hatziangeli, G.Kruk, M.Lamont, A.Radeva, U.Raich, C.Roderick, J.Serrano, W.Sliwinski, J.Wozniak

CERN – Geneva - Switzerland Accelerators and Technology Sector Beams Department - Controls Group

Context is a challenge!

Accelerate 2 beams of 2.2x10e14 (220,000,000,000,000) high energy protons in opposite directions around a 27km ring moving at 99.9999% of the speed of light

- Through two very narrow, very cold tubes
 - Squeeze the beams down to 16 microns
 - Collide the beams and keep them colliding for 10-15 hours
- Keeping beam-losses down to a very low level

Contents

- LHC control system requirements
- Philosophy of development
- Overview of the architecture
- Key components
- Quality Assurance (QA)
- Outlook towards the Future

03 October 2013

Contents

- LHC control system requirements
- Philosophy of development
- Overview of the architecture
- Key components
- Quality Assurance (QA)
- Outlook towards the Future

03 October 2013

Control System Requirements

 Provide information about accelerator Monitoring and recording Fault diagnostics 	 Provide controls to act on accelerator Automatic process control, feedback Sequence control
 Prevention of dangerous actions 	 Machine protection

Cover all operational scenarios

- Commissioning (preparation, testing)
- Physics (proton-proton, proton-ion, ion-ion)
- Machine Development (experimenting, tuning)

Contents

- LHC control system requirements
- Philosophy of development
- Overview of the architecture
- Key components
- Quality Assurance (QA)
- Outlook towards the Future

03 October 2013

Philosophy of development

- Provide extensible Frameworks and Tools
- Develop and deploy Generic services
- Applicability to all accelerators

Quality Assurance

Contents

- LHC control system requirements
- Philosophy of development
- Overview of the architecture
- Key components
- Quality Assurance (QA)
- Outlook towards the Future

03 October 2013

Controls HW infrastructure

Controls SW layers

Controls SW Infrastructure

Controls SW Infrastructure

Operational Consoles

CÉRN

Fr

ideeddaddaddad dae

Fixed

104

Displays

НС	Pagel	1	Fill:	2511		E: 450	GeV			1	.3-04-12	17:04:30
			PR	οτον	N PH	SICS	: INJE	CTION	I PHY	SICS	5 BEA	М
вст	T TI2:	7.78e	+13	I(B1): 1	.42e+14	4		BCT TI8:	0.00e+	00 <mark>I(</mark>	B2): 1.4	43e+14
TE		2 positio	n:	BEAN	И	TDI P2	gaps/mn	u up	: 10.68		down:	9.23
TE	στι	8 positio	n:	BEAN	Л	TDI P8	gaps/mn	n up	: 9.49		down:	9.53
FBC	T Inter	nsity and Bea	am Enerç	JY							Update	ed: 17:04:31
Intensity	L.4E14 - L.2E14 - 1E14 - 8E13 - 6E13 - 4E13 - 2E13 - 0E0 -	15:15	5	15:30	15:45	16:0		5:15	.6:30	16:45	17:00	4500 -4000 -3500 -2500 -2500 -2500 -1500 -1500 -1500 -500 0
Corr	nment	ts 13–04–	2012	16:47:56 :			BIS statu	is and SMP	flags Ream Peri	mits	B1 faise	B2
			fill wit	th 1092b			Mo	Global Bea Setup Beam Pi veable Devi	am Permit Beam resence ces Allowe	ed In	true faise true faise	true faise true faise

	GIUL	Jai Dealli Feilli	IL	uue	titue
fill with 1092b		Setup Beam		false	false
	Be		true	true	
	Moveable	ved In 🔡	false	false	
	S	itable Beams		false	false
AFS: 50ns_1092b_1054_0_1032_108bpi12inj	PM Status B1	ENABLED	PM Status B2	EN	IABLED

Controls SW Infrastructure

Device-Property Model

03 October 2013

Contents

- LHC control system requirements
- Philosophy of development
- Overview of the architecture
- Key components
- Quality Assurance (QA)
- Outlook towards the Future

03 October 2013

Key components

03 October 2013

Key components: Timing System

Timing System

- Have many systems acting in sync
 - ex. synchronously ramp up LHC magnets
- Provide a common notion of time in distributed
 system to make sense of acquired data
 - LHC: data timestamps have 1 μs precision

TIME and SYNCHRONIZATION are very IMPORTANT everywhere

 Compensate the transmission delay from the source to receivers

 Compensate the transmission delay from the source to receivers

 Compensate the transmission delay from the source to receivers

Compensate the transmission delay from the source to receivers
 Keep clocks of the nodes in sync

Compensate the transmission delay from the source to receivers
 Keep clocks of the nodes in sync

Compensate the transmission delay from the source to receivers
 Keep clocks of the nodes in sync

Compensate the transmission delay from the source to receivers
 Keep clocks of the nodes in sync

- Compensate the transmission delay from the source to receivers
- Keep clocks of the nodes in sync
- Generate very good periodic clock at the source

LHC Timing System: today

- Event-based timing system
- Dedicated network
- Manually calibrated (hardcoded delays)
- 2 source nodes (active + hot spare)

~1000 receiver serving ~8000 clients

LHC Timing System: future

Switch to WhiteRabbit 4

- Time-based timing system
- Automatically synchronized "common time"
- Ethernet-based
- Deterministic
- Reliable: redundant both for topology and data
- Initiated and developed in CERN
- Open standard

Open Source Hardware

- Initiated by CERN (BE/CO/HT)
 Inspired by Open-Source Software
 - Hardware designs and documentation are publically accessible
 - Knowledge dissemination
 - Improved hardware quality
 - No vendor-lock
 - Re-usage of designs

Key components: FESA

03 October 2013

Front End Software Architecture

- Framework to develop real-time software to control equipment
- Integrates the equipment into Control System
- Equipment => device-property model
- Common model for software structure
- Allows developer to focus on HW-specific logic
- Saves developer's time
- Standard approach to develop Front-End Software for all accelerators

FESA: development workflow

FESA: runtime

FESA: features

- Simplifies the development
- Consistent: across all equipment software
- Satisfies equipment groups
 - Working with many devices
 - Devices generate a lot of data
 - Strong real-time constraints

- ~100 developers from 16 equipment groups
- ~600 device types (~200 in LHC)
- ~55000 devices (~25000 in LHC)
- ~1000 Front-Ends (~500 in LHC)
- Exportable: used in GSI (Darmstadt)

Key components: CMW

03 October 2013

Controls MiddleWare (CMW)

- Core communication layer => critical
- Collection of software components & services
- Communication => device-property model
- Operations: GET, SET, SUBSCRIPTION
- Widely deployed for all CERN accelerators

CMW: architecture

CMW: architecture

CMW Remote Device Access

- Client & server libraries (C++, Java)
- (was) CORBA-based => moving to ZeroMQ
- Decentralized (no brokers, etc) => scalable
- Directory Service is clustered

CMW: features

- Reliable communication in distributed system
- Integrated with all the platforms
 - Linux / Windows (x32 / x64), LynxOS
 - FESA, PVSS, FGC
 - C++, Java

Provides comprehensive diagnostics

- 4'000 Front-End servers (processes)
- 85'000 (FESA + PVSS) devices => 2'000'000 properties
- 2 Directory Servers (clustered)
- Exportable: used in GSI (Darmstadt)

Key components: LSA

03 October 2013

LHC Software Architecture (LSA)

Settings Management System

LSA 270'000 device properties to control Different settings within LHC cycle Different operational scenarios 150'000 of settings

LSA: requirements / expectations

Settings Management System

- Generation of initial settings based on optics
- Storage/modification of settings for all devices
- Coherent modifications of settings
- Settings versioning
- History of changes and rollback
- Communication with the hardware
 - Deals with different hardware types and interfaces

LSA: implementation

Translation of high-level accelerator parameters to low-level device properties

LSA: implementation

🛃 LSA i	Applications Suite - version 0.7.4								
<u>F</u> ile <u>A</u>	pplications <u>S</u> earch <u>O</u> ptions								Help
S	⑧ LHC ▼ 第 OP ▼ Θ	BP 💌 🔗 🏂 🕅		RBA: no token					
Trim	Editor (Beta Version) ×								
	Beam Pr	ocess		System		Туре	Group	Paramete	ег
BI-STAF	RT-SQUEEZE-2011-ACTUAL		^	SKEW SEXTUPOLES	^	KNOB		LHCBEAM1/QH_TRIM	
DISCF	🐇 Parameter Hierarchy								
DISCE F	arameter: LHCBEAM1/QH_T	RIM						Hierarchy:	DEFAULT 👻
RAMP		RQTF.A56B1/K1	<mark>_</mark>	RQTF.A56B1/K_SMOOTH	→ <u></u>	RQTF.A56B1/	<mark>} → R</mark>	PMBB.UA63.RQTF.A56B1/R	EF
<u>NON</u> ADT-T		ROTD.A67B1/K1	<mark>_</mark>	RQTD.A67B1/K_SMOOTH	→ _	RQTD.A67B1/	<mark> </mark>	PMBB.UA67.RQTD.A67B1/IR	ŒF
Collin Collin			<mark>_</mark>	RQTF.A81B1/K_SMOOTH	→ _	RQTF.A81B1/	<mark> → _ R</mark>	PMBB.UA87.RQTF.A81B1/IR	EF
	/	RØTF.A67B1/K1 -	> <mark>_</mark>	RQTF.A67B1/K_SMOOTH	→ _	RQTF.A67B1/	<mark> → R</mark>	PMBB.UA67.RQTF.A67B1/IR	EF 1/4
000 O		RQTD.A23B1/K1 -	<mark>।</mark>	RQTD.A23B1/K_SMOOTH	→ _	RQTD.A23B1/	<mark> → R</mark>	PMBB.UA27.RQTD.A23B1/IR	EF 🛛
		RQTD.A45B1/K1	<mark>।</mark>	RQTD.A45B1/K_SMOOTH	→ _	RQTD.A45B1/	<mark>⊢ → </mark> R	PMBB.UA47.RQTD.A45B1/IR	<mark>EF </mark>
		RQTF.A12B1/K1		RQTF.A12B1/K_SMOOTH	→	RQTF.A12B1/	<mark> → R</mark>	PMBB.UA23.RQTF.A12B1/IR	EF
		RQTD.A34B1/K1	<mark>।</mark>	RQTD.A34B1/K_SMOOTH	→ _	RQTD.A34B1/	<mark> </mark>	PMBB.UA43.RQTD.A34B1/IR	
		RQTD.A81B1/K1	<mark>।</mark>	RQTD.A81B1/K_SMOOTH	→ _	RQTD.A81B1/	<mark> </mark>	PMBB.UA87.RQTD.A81B1/IR	<mark>EF </mark>
		RQTF.A78B1/K1		RQTF.A78B1/K_SMOOTH	→	RQTF.A78B1/	<mark> → R</mark>	PMBB.UA83.RQTF.A78B1/IR	EF
		RQTF.A45B1/K1		RQTF.A45B1/K_SMOOTH	→ _	RQTF.A45B1/	<mark> → R</mark>	PMBB.UA47.RQTF.A45B1/IR	EF
		RQTD.A78B1/K1	<mark>।</mark>	RQTD.A78B1/K_SMOOTH	→ _	RQTD.A78B1/	<mark> → R</mark>	PMBB.UA83.RQTD.A78B1/IR	EF
		RQTD.A12B1/K1	<mark>।</mark>	RQTD.A12B1/K_SMOOTH	→ _	RQTD.A12B1/	<mark>⊢→</mark> R	PMBB.UA23.RQTD.A12B1/IR	
		RQTF.A23B1/K1 -	<mark>_</mark>	RQTF.A23B1/K_SMOOTH	→ _	RQTF.A23B1/	<mark> → R</mark>	PMBB.UA27.RQTF.A23B1/IR	EF
		RQTD.A56B1/K1	<mark>_</mark>	RQTD.A56B1/K_SMOOTH	→_	RQTD.A56B1/	<mark> → R</mark>	PMBB.UA63.RQTD.A56B1/IR	
		RQTF.A34B1/K1	<mark>_</mark>	RQTF.A34B1/K_SMOOTH	→ _	RQTF.A34B1/	<mark> ≻</mark> R	PMBB.UA43.RQTF.A34B1/IR	EF
	Children Parents								
									Close

1

LSA: implementation

Translation of high-level accelerator parameters to low-level device properties

LSA: architecture

03 October 2013

LSA: today

- Shared between Controls and Operations
- 6 accelerators:
 - LHC, SPS, LEIR, PS, PSB, ISOLDE
 - Exportable: used in GSI (Darmstadt)
- > 200 HW types
- > 270 K device properties managed
- > 150 M of settings
- ~ 200 client applications
- > 1M lines of Java code

Key components: Sequencer

03 October 2013

Sequencer

Automates execution of sequences of tasks

- Check a device property has certain value
- Ask LSA to load the settings
- Wait for the equipment to be ready

Guides operators

Operators' external memory

SEQ: implementation

03 October 2013

SEQ: Implementation

- PREPARE FEEDBACKS FOR INJECTION
- ¬ □ PREPARE FEEDBACKS FOR INJECTION
 - SET FEEDBACK OFSU PRO
 - CHECK FEEDBACK STATE ORBIT OFF
 - DISARM FEEDBACKS
 - RESET TIME CONSTANT FOR FBS
 - FETCH ALL OPTICS TO OFSU
 - SET OPTICS OPERATION MODE MANUAL
 - ¬ □ DRIVE INJECTION SETTINGS FOR OF
 - MAKE LHC.USER.INJECTION RESIDEN
 - LOAD INJECTION REF ORBIT FOR OF
 - SET ACTIVE ORBIT INDEX
 - CALC ACTIVE BEAM PROCESS OPTIC
 - SET ACTIVE BEAM PROCESS OPTICS
 - ¬ □ DRIVE TUNE FB SETTINGS FOR INJE
 - SWITCH FEEDBACK STATE TUNE_B1 0
 - SWITCH FEEDBACK STATE TUNE_B2 0
 - MAKE LHC.USER.INJECTION RESIDEN
 - LOAD FEEDBACK INJECTION SETTING
 - LOAD TUNE FITTER SETTINGS B1
 - LOAD TUNE FITTER SETTINGS B2
 - LOAD TUNE FITTER SETTINGS B2 (FF
 - LOAD TUNE FITTER SETTINGS B1 (FFT
 - LOAD TUNE FITTER SETTINGS B2 (FF
 - LOAD TUNE FITTER SETTINGS B1 (FF
 - SELECT QFB DEVICE FOR PILOT

03 October 2013

- PREPARE RAMP
 PREPARE OFB SETTINGS WHILE FILLING
 ENABLE POST MORTEM EVENTS
 - 🕨 🚞 FORCE SBF TO FALSE
 - SWITCH OFF ABORT GAP CLEANING
 - RF CHECKS: WATCHDOG&FREQ B1/B2 LINKED
 - DISABLING INJECTION AND INJ COLL OUT
 - DISABLE INJECTION CLEANING
 - HANDSHAKE END OF INJ SM&BM = PREPARE RAMP
 - STOP FIDEL TRIMMING
 - CALCULATE FIDEL RAMP CORRECTIONS
 - ¬ □ SWITCH ON AND ARM OFB
 - SWITCH ON ORBIT AND ENERGY FEEDBACKS
 - ¬ □ ARM ORBIT FEEDBACKS
 - LOAD RAMP OPTICS ORBIT CHANGE TABLE
 - ARM OFB REF ORBIT CHANGE
 - INCORPORATE INJECTION TRIMS INTO THE RAMP
 - Carbon Comparison of the test of test
 - LOAD ADTDSPU BUNCH MASK FOR RAMP
 - SWITCH ON BBQ BUNCH GATING
 - CHECK TUNE FEEDBACK CONFIGURATION
 - 🕨 🛅 SWITCH TUNE FB ON
 - MAKE LHC USER FIDEL RESIDENT
 - MAKE LHC.USER.RAMP RESIDENT
 - LOAD RAMP SETTINGS IN PC&RF FGC
 - Carrier Construction BLOW-UP
 - COLL RAMP SETTING & DUMP PROTEC COLL RAMP SETTINGS
 - CHECK INJ-PROT OUT COLL INTERLOCKED OUT
 - END SUBSEQUENCE BREAK

0	.6M 2012
FF	
	TION INTO SQUEEZE BP AND LOAD TABLE
	FILL FOR ADT GAINS AND PHASE SHI
D	SPU BUNCH MASK FOR SOUREZE
JE	EZE IN 1 STEP WITH OFB ON
EE	ZE SEGMENT 0-> 9255
R F	OR BP REGENERATION AT 925 S
E (OFB FOR SQUEEZE
Сŀ	I ORBIT AND ENERGY FB OFF
REI	F ORBITS FOR THE SQUEEZE
ст	IVE ORBIT INDEX 0
Кr	ef orbit for squeeze
Cł	HECK REFERENCE ORBIT CORRECTLY LOADED
0	RBIT AND OPTICS TABLE CHANGE FOR SQUEEZ
DFI	B REF ORBIT CHANGE
25	55
Cŀ	ON ORBIT AND ENERGY FEEDBACKS
E .	TUNE FB FOR SQUEEZE
Qι	JEEZE 2011 PC TABLES SEGMENT
FEI	EDBACKS ARMED
сн	IRP AND QFB OFF
TA	
AR	IT TBL (33) EVT

SEQ: features

- Reliable execution and error reporting
 Safe mode
 - run-through automatically
 - run until task
 - step task-by-task
- Expert mode
 - skip task
 - jump to task
- Parallel task execution
- Sequence editing

- Collaboration with operators and domain experts
- Used in LHC (and other accelerators)
- ~ 1250 sequences for LHC Beam Operation
- ~ 350 tasks types

LHC main sequence: ~1100 tasks in total

Key components: OASIS

03 October 2013

Open Analog Signal Information System

- Analog signal acquisition and digitalization
- Analog signal visualization (correlation)
- Full vertical system
 - Hardware, Front-Ends, Application server, GUI
- Standard independent infrastructure to digitize, transport and visualize

Invaluable diagnostics tool

OASIS: architecture

OASIS: architecture

03 October 2013

- ~100 front-ends (18 in LHC)
- ~500 digitizers (60 in LHC)
- 200 kHz \rightarrow 8 GHz
- ~5000 signals (~200 in LHC)
- 80'000 signal acquisition requests per year

That's it for today: questions?

03 October 2013