Analysis of the ${ }^{237} \mathrm{~Np}(\mathrm{n}, \mathrm{f})$ data with the FIC detector

M. Diakaki

National Technical University of Athens

Outline

- Goal: analysis of the ${ }^{237} \mathrm{~Np}(\mathrm{n}, \mathrm{f})$ cross section data with FIC (n_TOF phase 1).
- Pulse shape analysis procedure.
- Problems faced- Solutions proposed.
- Results -To do's.

FIC0 2003 - target assembly

- $\mathrm{Ar} 90 \%, \mathrm{CF}_{4} 10 \%$ at $720 \mathrm{mbar} /$ sealed detector.
- $\mathrm{d}=2 \mathrm{~cm}$.
- Sample diameters: $8 \mathrm{~cm}, 5.2 \mathrm{~cm}$.

-Each detector signal was recorded at a FADC channel every 25 ns in a time window of $100 \mu \mathrm{~s}$. -Reference for cs calculation: $\sigma(\mathrm{U} 235(\mathrm{n}, \mathrm{f}))$ up to $\mathrm{E}=2 \mathrm{MeV}$ and $\sigma(\mathrm{U} 238(\mathrm{n}, \mathrm{f}))$ above.

Cross section calculation

$\sigma_{N p_{7}(n, f)}=\frac{C_{N p 7} N t_{\text {ref }} \text { nEvents } s_{\text {ref }} \text { eff } f_{\text {ref }}}{C_{r e f} N t_{N p 7} \text { nEvents }_{N p} \text { eff } f_{N p 7}} \sigma_{r e f}$

C: number of accepted FF pulses.
Nt: number of target nuclei (for Np7, U5c, U8c values obtained from alpha measurements / RBS, for the rest nominal values taken) nEvents: number of accepted events (normalization)
 eff: "efficiency" factor for correction of self absorption of FF in the samples: FLUKA simulations.

The pulse shape analysis routines made by D. Karadimos were used.

Pulse Shape Analysis (fic code)

Undershooting and rippling of the baseline after the gamma flash.

- "Average event": addition of all the events with similar flash integral values $\left(Y_{\text {average }}(t)\right.$).
- Analysis of raw data:

1. Selection of the proper "average event" and fit with linear function $\mathrm{Y}(\mathrm{t})=\mathrm{Y}_{0}+\mathrm{A} \mathrm{Y}_{\text {average }}(\mathrm{t})$ (yellow) 2. Subtraction of fitted average event from raw data / median filter 3. (green) 3. Pulse Shape Analysis:
$Y_{\text {peak }}(t)=Y_{0}+A\left(1-e^{-\frac{t t_{0}}{t_{1}}}\right)^{p} e^{-\frac{t-t_{0}}{t_{2}}}$
(6 parameters: $\mathrm{t}_{1}=1.2 / \mathrm{t}_{2}=4.3 / \mathrm{p}=9.9$)
-Same function for fitting of gamma flash.
Time of Flight: centroid of the peak corrected for the distance covered in the Pb target and coolant/moderator layer.

Sensitivity on the grouping of events based on flash integral values (1)

Sensitivity on the grouping of events based on flash integral values (2) More difficult case: Np237

- Fitted "Average signal" slightly overestimates the raw data.
- Pulse shape analysis code succeeds to fit the FF pulses.

Sensitivity on the grouping of events based on flash integral values (3)

Differences that don't exceed 1.3% up to 10 MeV

Sensitivity on the background level choice

Selection of events-pulses (rootres code)

- Fitting parameters and errors from fic are stored in binary files. rootres creates the corresponding histograms in ROOT files for further selection.
- Rejection of whole events with exclusion of gamma flash or average signal fitting parameters and FF pulses with exclusion of peak fitting parameters is possible.
- For each sample a separate analysis was performed in order to estimate the accepted limits of the fitting parameters and their errors.

${ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f})$ cross section calculation with ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ as reference

1) U8c as target (small targets)

Good reproduction of ENDF/B VII. 1

Targets with same surface give reasonable results

- Same results taking U8a as target.

1) U5 target pulse shape analysis is problematic due to big mass value+cross section=>High counting rate.
2) U8(big target) / U5c,U5b (small targets): systematically lower cs: Neutron fluence losses due to different surfaces???

-Very massive target + high cross section value => average signal fails to reproduce raw data.
-Various efforts were made to improve the situation without great success.

- Need to use U5b or U5c as reference target $=>$ U5b better statistics.

Investigation of correction factor due to different surfaces

- Smaller diameter (5.2cm) than Np237(8cm): Correction factor due to lower neutron fluence
- Estimation from:

1. Reaction rate ratio ($\mathbf{U 8} \mathbf{~ b i g}) /(\mathbf{U 8}$ small)
2. Ratio cs ${ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f}): \quad \mathrm{ENDF} /\left(\mathrm{cs}{ }^{238} \mathrm{U}(\mathrm{n}, \mathrm{f})\right.$ - (big/small))

Mainly interested in the neutron energy region $<2 \mathrm{MeV}$

Calculation of the neutron beam profile with calculator (V. Vlachoudis)

Reaction rate ratio fitting example

Cross section ratio fitting example

Mean value from all the fittings:
$\mathbf{1 . 0 7} \pm \mathbf{0 . 0 1}$

Correction factor for cross section
Calculation ${ }^{237} \mathrm{~Np}(\mathrm{n}, \mathrm{f})$ with reference U235b (up to 2 MeV).

Energy (eV)

Preliminary cross section results up to 1 MeV

Preliminary cross section results $1-10 \mathrm{MeV}$

To do's

- Estimation of subthreshold fission fragment signals (FLUKA simulation histograms convoluted with resolution function).
- Finalization of the analysis - Investigation of the systematic uncertainties.
- Theoretical investigation of ${ }^{237} \mathrm{~Np}(\mathrm{n}, \mathrm{f})$ cross section with statistical models (EMPIRE code).

Thank you

European Union European Social Fund

MINISTRY OF EDUCATION \& RELIGIOUS AFFAIRS
MANAGING AUTHORITY
Co-financed by Greece and the European Union

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

APPENDIX

OFFSET: 0.95

Relative statistical error

