N_ToF Experiment DAQ Hardware/Software Upgrade

A. Masi, M. Donze`, A. Hernandez Prieto

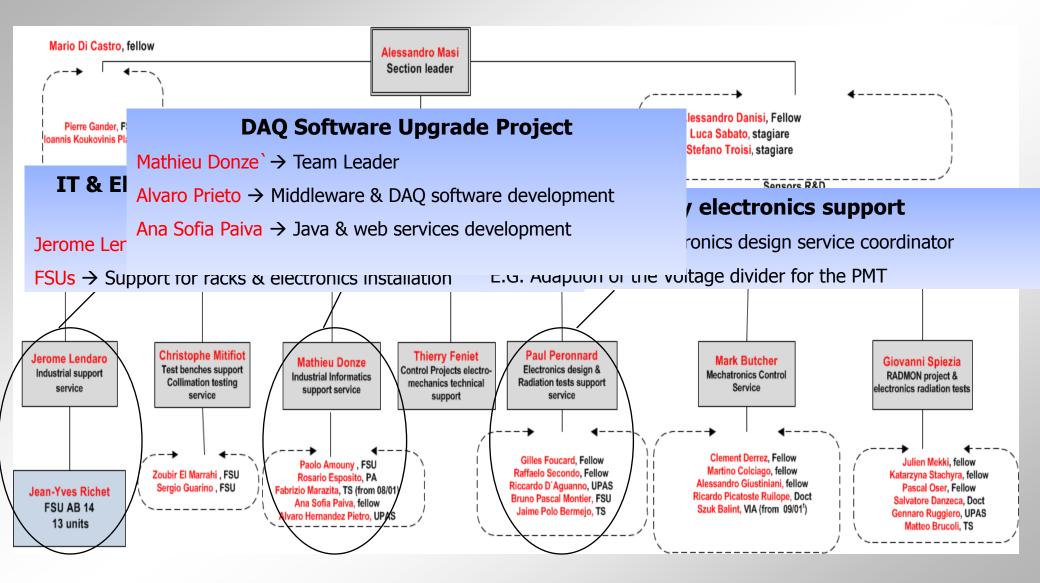
Contents

- **1. New technical support organization**
- 2. Hardware upgrade improvements
- 3. Software Upgrade/Improvements
- 4. Timeline
- 5. Conclusions

EN-STI Equipments Control & Electronics (ECE) Section takes the responsibility to provide IT & electronics support to n_ToF facility

Section leader: Alessandro Masi

Mandate:


- •Design, installation and maintenance of control and acquisition systems on different platforms (PLC,PXI,VME)
- Strong skills in control systems for movable devices (e.g. scrapers, collimators, shielding and target) and positioning control systems in hard radioactive environment at few um accuracy
 - Automatic test and measurement benches development
 - General Electronics support and development
 - Radiation effects on the electronics monitoring and study

1-New technical support organization								
Accelerator	Project		Support for operation	New controls development/ consolidation		R&D		
	Collimators phase 1 and phase 2		1	1		1		
LHC	TDI in IP2 and IP8		4	4		1		
	RADMON, radiation tests on the electronics		1	4		4		
	CNGS: target and shutter		- √					
SPS	Scraper		1					
	UA9 Crystal Experiment		- √	▲		1		
PS	Beam Stoppers		1	4				
	DUMPs		- √	4				
North, East Exp. Area	Movable obstacles, Targets		4		J	-		
Linac 2, Linac 3, Leir	SLITs		4	Test & developmen DAQ cards for EAR2 upgrade				
Isolde/ HIE-Isolde	Front-end FE6, picomotors, slits		1					
Linac 4	Beam stoppers and dumps	Maintenance & long			ftware &			
AD	Scraper, Target		support/ support to	evnerime	nt controls			
CTF3	Laser control system	the op	peration & stand-by service	architectur	e upgrade- & IT support	\ 1		
	Tail Clipper		- ◀					
RILIS	Interlocks System		1					
Photo Injector Lab	Monitoring and control		1		N	▲		
Ntof	Daq system							

1-New technical support organization

The ECE section will ensure in best effort the:

- Electronics & IT support on the construction of the EAR2
- Upgrade of the DAQ software and experiment management software architecture
- General electronics support
- Maintenance and support during the operation (i.e. piquet service)

In order to do that:

- A new "standard" experiment data interchange middleware is being developed
- The installation of new detectors, software and/or hardware modifications should be coordinated by the ECE section
- S. Montesano will collect the collaboration requests

2- DAQ Hardware Upgrades/Improvements

Detectors Specifications review

Detector	Rise Time (ns)	Signal BWD (MHz)	Sampling rate required (GS/s)	Signal Range (V)	Required Noise Level (V)
TAC	2	175	1.75	0 ÷ -0.2	0.0008
MGAS	10-20	35	0.35	0 ÷ -0.5/0 ÷ -5	0.004
MGAS2	10-20	35	0.35	0 ÷ 0.5/0 ÷ 5	0.01
SIMON	100	3.5	0.035	0 ÷ -5	0.06
C6D6	2	175	1.75	0÷-2	0.004
K6D6	4	87.5	0.875	0 ÷ -0.5	0.001
PPAN	4	87.5	0.875	0 ÷ -0.2	0.0015
PPAC	20	17.5	0.175	0 ÷ -0.1	0.0015
DIAMON1	0.8	437.5	4.375	0 ÷ 0.05	0.0025
DIAMON2	80	4.375	0.04375	0 ÷ 0.5/ 0 ÷ 1	0.003
FIC	20-30	17.5	0.5	0÷1	0.005

A Masi, M. Donze`, A. Hernandez Prieto, N_ToF Experiment DAQ Hardware/Software Upgrade, n_TOF Collaboration/Collaboration Board - November 2013

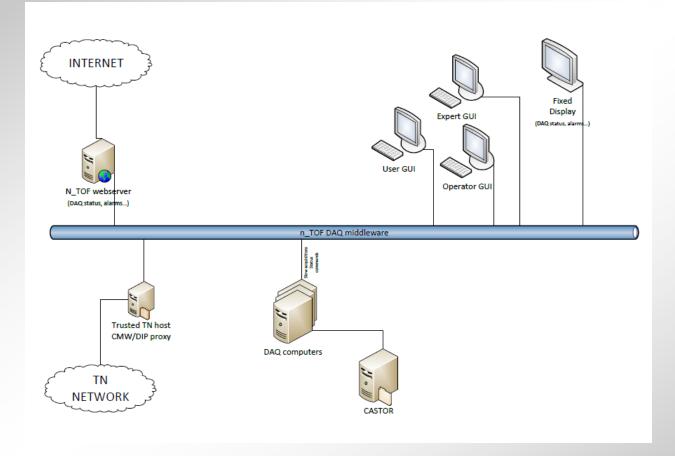
DAQ Cards Specifications Review

- Dynamic range: 10 bit for all the channels with proper frontend or 12 bit with only few input gains
- Full Scale Range: +/- 2.5 V with offset regulation (10 bit version) or +/- 5
 V without offset regulation on 12 bit
- Bandwidth: > 500 MHz < 1 GHz- 800 MHz ok for all the detectors</p>
- Coupling: DC with adjustable BIAS (+/- 2.5 V)
- Sampling Frequency: > 1 GS/s- Selectable from 1 GS/s up to likely more than 4 GS/s
- Operational mode: Burst mode. 100 ms time window should be acquired and stored locally. Acquisition repetition rate: 1 Hz. The data should be transferred to the Host in less than 1.2 s
- Triggering: External trigger
- Synchronization: synchronization between channels better than 1 sample
- Quantity: 32 channels at 1 GS/s and 8 channels at more than 3 GS/s

The New DAQ cards evaluation criteria

- Performances: Dynamic range and bandwidth are the most important but a possible relaxation should be discussed case by case (e.g. DC coupling)
- Experimental results: General recommendation is do not believe to the datasheets. An accurate characterization campaign should be performed on sample units. The characterization to be useful requires specific instrumentations and a full compliance of the standards (i.e. IEEE 1241)
- Long term support: The cards, drivers, bus type must be supported by our section for the entire life time of the project. Standard solutions supported by BE/CO are strongly recommended
- Price: The lower the better

- 1. Definition and setting up of a an Experiment Middleware : DIM
- 2. Upgrade the DAQ software to make it modular and compatible with new DAQ cards
- 3. Replacement of the trigger management box with a standard BE/CO solution based on timing cards
- 4. Build up n_TOF Control Center Applications
- **5. New Experiment Configuration Management**
- 6. Logging system upgrade
- 7. Webservices renovation

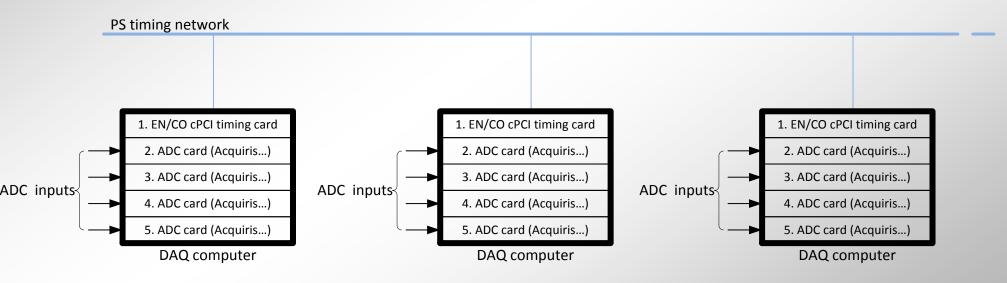

- Make easier the experiment data distribution (i.e. slow parameters, settings, commands) among different clients/webservices
- Make easier the integration of new DAQ cards/detectors/instruments
- Improve the data synchronization
- Allow Data Clients multiplatform

• Why the DIM choice ??

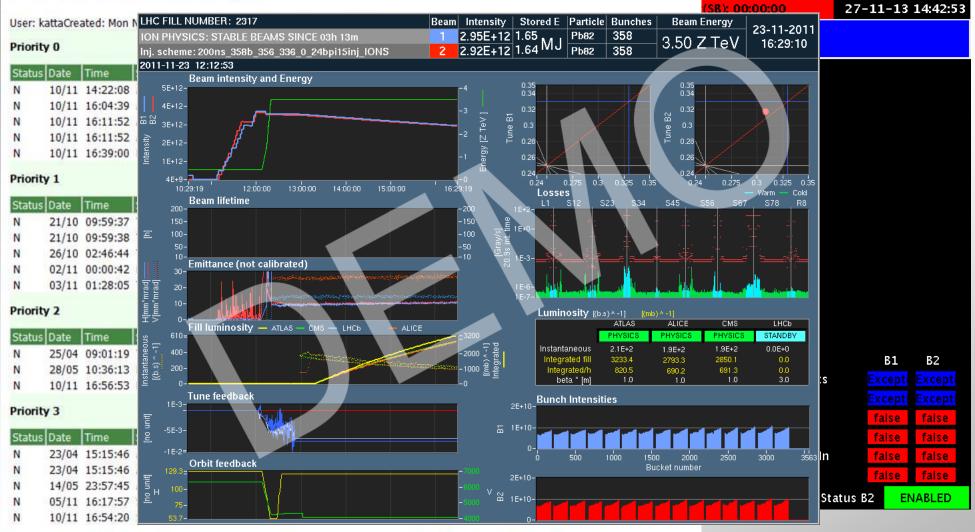
DIM (Distributed Information Management System) is a communication system for distributed / mixed environments, it provides a network transparent inter-process communication layer

http://dim.web.cern.ch/dim/

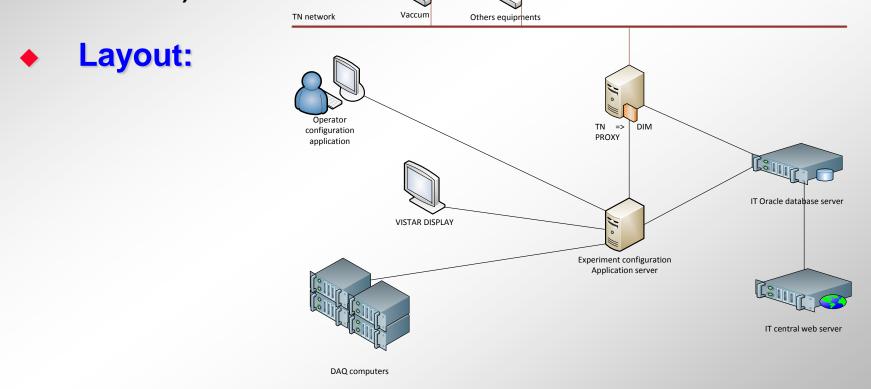
- DIM is open source, multi-platforms and supported at CERN
- DIM has been successfully used as middleware in the LHCb experiment, the LHC Collimators low level communication layer and the UA9 experiment
- DIM has proven to be reliable and easy to integrate both on machines on GPN and TN



- Modularity
- Easiness to add new DAQ systems/cards without touching the software
- Easier maintainability
- Possibility to mix different DAQ cards ensuring the compatibility of the raw data format
- Possible migration to Linux 64 bit


- Modularity
- Timing synchronization between different systems at ns level
- Cabling simplification

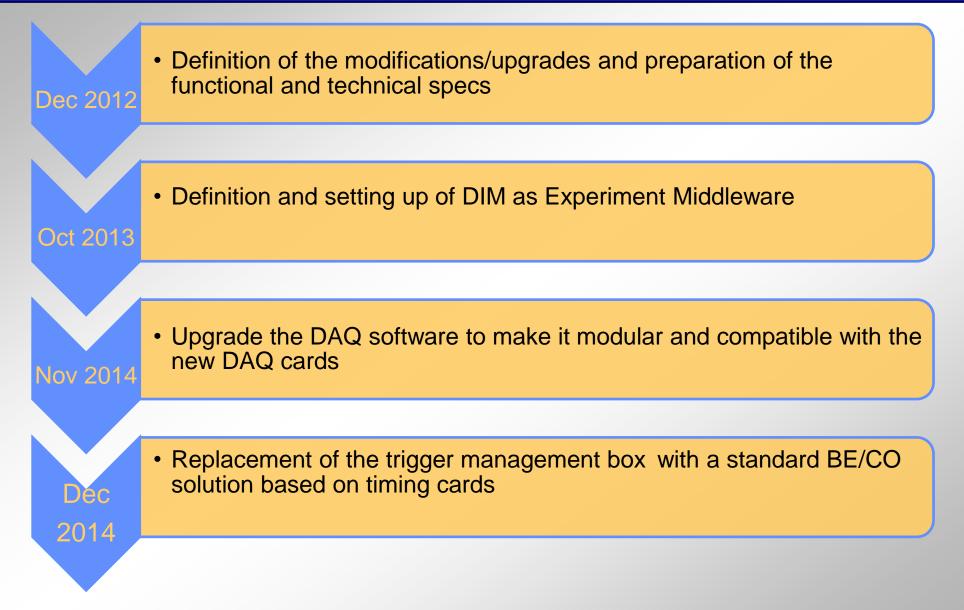
Layout:



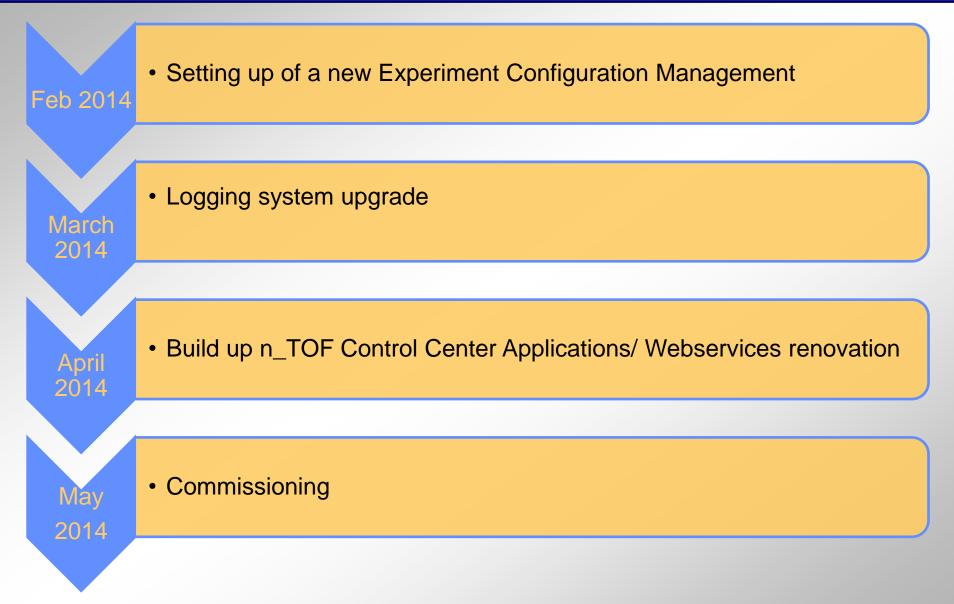
Laser Console ACTIVE list report

- Modularity
- Easier tracking and changes history
- Easier configuration info distribution
- Storage of configuration parameters in a Oracle Database (Standard IT service)

- Use Oracle standard IT services
- Slow parameters stored in the Database at each run
- Configuration file stored in the Database at each run
- Target slow parameters will be stored in the LHC standard logging system


- To be decided storage files organization Possible options:
 - Keep the slow parameters file as it is now
 - Add slow parameters in each DAQ logging file
 - Leave just the slow parameters in the Database

- Standard IT service to host the website
- Vistar as webpage
- Logbook



4-Timeline

4-Timeline

- The proposed software and hardware upgrades are under development. They should be completed by next May 2014
- The increased modularity will allow an easy setting up of the DAQ system for the EAR2
- The new acquisition cards should be bought by the Q2 2014
- The more visible advantages of the DAQ upgrade will be an experiment operation control software LHC like (i.e. more friendly and effective) and a professional support to the operation

