

Planning for the commissioning of EAR-1 and EAR-2

Frank Gunsing

CEA/Saclay F - 91911 Gif-sur-Yvette, France frank.gunsing@cea.fr

Frank Gunsing, CEA/Saclay

EAR1 – EAR2 Commissioning Proposals

EAR1 proposal

- outline to be approved by CB
- to be presented to INTC on February 12, 2014,
- Total number of protons proposed: 34 x 1e17

EAR2 proposal

- has been presented to INTC on October 23, 2013.
- Total number of protons 98 x 1e17 requested and accepted.

EAR1 Commissioning

Changes in beamline EAR1

- 1. Realignment of collimator 1
- 2. Reduce inner diameter of final vacuum tube
- 3. Position of 185-m vacuum window before collimator 2
- \rightarrow need for commissioning

Focus commissioning EAR1 on

- 1. Beam profile
- 2. Resolution Function and TOF-E_n calibration
- 3. Background
- 4. Response/test of existing/new detectors

EAR1 – Beam profile

Beam profile measurements in capture collimator configuration

Need for sufficient statistics.

- New transparent XY-MGAS (1 for EAR1, 1 for EAR2)
- New SiMon2 with ⁶Li?
- New/old PPACs?

Use detectors simultaneously.

EAR1 – Resolution function

Resolution function

Need for sufficient statistics, RF also with TAC

 TAC+C₆D₆ with ⁵⁶Fe (high E) and ²³⁸U (low E) INPTC-P-249: 2.3e17 protons for 1000 #reactions in 181 keV resonance of ⁵⁶Fe

- TAC	- ⁵⁶ Fe: 2.3e17 p	²³⁸ U:	0.7e17
$-C_6D_6$	- ⁵⁶ Fe: 12e17 p	²³⁸ U:	3.5e17

EAR1 – Background

Background on TAC

- influence of upstream in-beam material (detectors)
- influence of in-beam samples (C (several), Au, Fe, empty)

Background on C₆D₆

• influence of in-beam samples (C (several), Au, U, empty) on low-energy background, down to thermal

Detector response functions

- current detectors PPAC, MGAS, C6D6, TAC
- new detectors, LaBr3, HPGe, CsI, others?

Summary EAR1 Commissioning

1.	Beam profile	x1e17 protons 6
2.	Resolution function	19
3.	Background	4
4.	Detectors tests	2
5.	Unforeseen	3
	total	34

 Expand time range of DAQ to go down to near thermal (Eric: chaining Acqiris modules for ²⁴¹Am)

acquisition time	lowest energy	
16 ms	\rightarrow	700 meV
96 ms	\rightarrow	19 meV

- Try in-beam thick Pb/Bi filter to lower gamma flash
- Record full EAR (1 and 2) configuration in logbook
- Implement a local (EAR1) reference grid (zero offset)

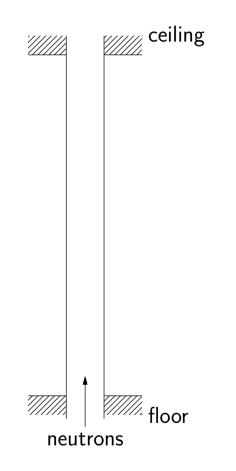
EAR2 Commissioning

EAR2 proposal

- presented to INTC on October 23, 2013.
- Total number of protons requested and accepted:

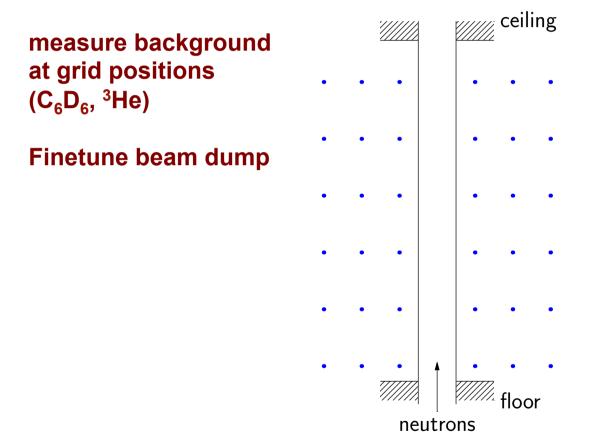
98 x 1e17

- Neutron flux 24
- Beam profile 12
- Resolution function 9
- Backgrounds 35
- Detectors tests 8
- Unforeseen 10

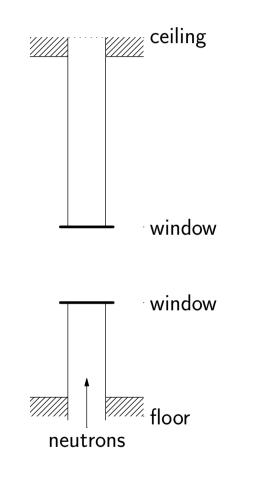

Start with flux and backgrounds

 Optimize changes in and around EAR2, Two collimator-setups (one "fission" and one "capture" setup), change only once.

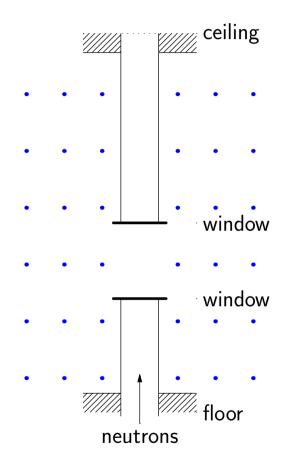
Do a background mapping with off-beam detectors (C₆D₆, ³He, others) for each change of in-beam elements (like windows, detectors)

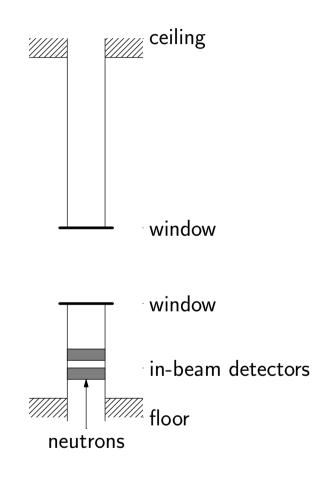


Nothing in beam



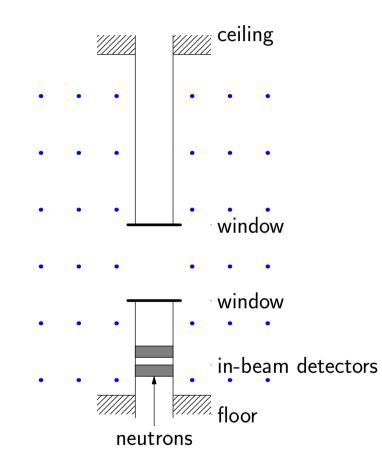
Nothing in beam


Add material in beam (windows)

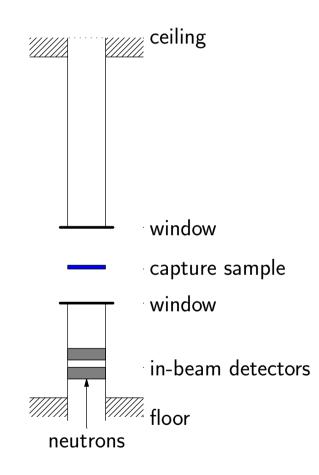

Add material in beam (windows)

measure background at grid positions $(C_6D_6, {}^{3}He)$

Add material in beam (flux detectors)

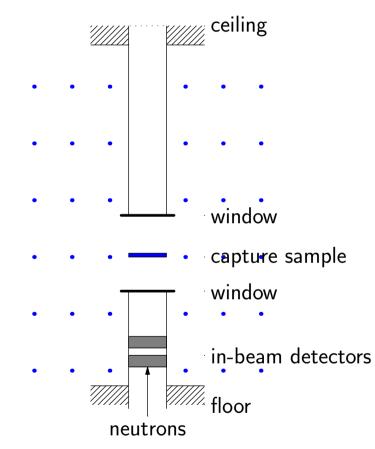


Add material in beam (flux detectors)


measure background at grid positions (C₆D₆, ³He)

measure flux

Add material in beam (capture sample)



Add material in beam (flux detectors)

measure background at grid positions (C₆D₆, ³He)

measure flux

Background

Background mapping

 neutrons:
³He-array, CR39, PPAC/MGAS outside beam, ⁶Li glass, Timepix, BC501

• gamma: C₆D₆, LaBr₃/LaCl₃/CeBr₃, HPGe, others

Add detectors in fixed position (monitors)

35 x 10¹⁷ protons

Frank Gunsing, CEA/Saclay

Neutron flux

Neutron flux measurements

- New PPAC (²³⁵U, ¹⁰B, ⁶Li, (n,p)?)
- New MGAS (²³⁵U, ¹⁰B, ⁶Li)
- New SiMon (⁶Li)
- PTB (²³⁵U), or calibrate PPAC/MGAS at PTB
- Activation of gold foils

Beam profile

Beam profile measurements

- New transparent XY-MGAS
- New SiMon with ⁶Li inside strip-sandwich (dedicated beam)
- New PPAC
- CR39
- Beam halo with Au activation

Detector response

Detector response functions

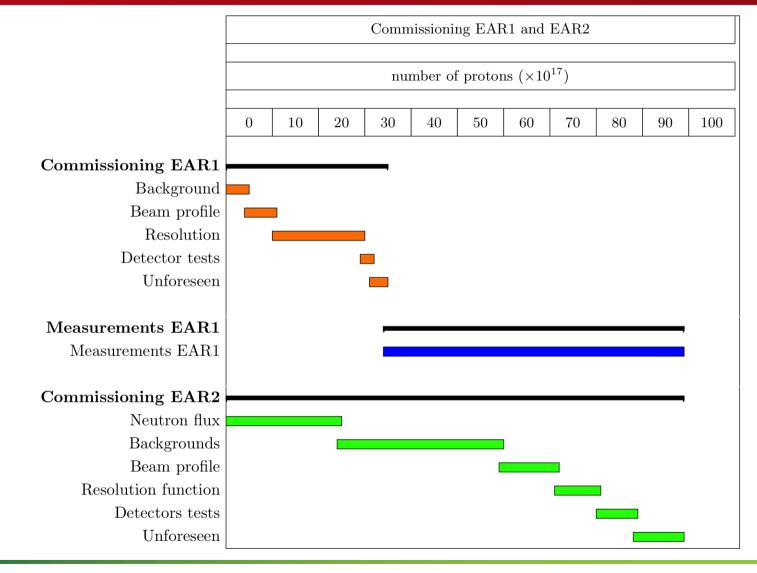
- C₆D₆ (all types)
- LaBr₃/LaCl₃
- BaF₂
- (n,cp) detectors
- HPGe
- Csl, others?

Cross section validation

Cross section validation measurements

- $C_6 D_6^{197} Au(n,\gamma)$, ²³⁸ $U(n,\gamma)$ or ⁵⁶Fe(n, γ)
- PPAC ²³⁸U/²³⁵U (n,f)

0 x 10¹⁷ protons (already included)



Additional points for EAR2 Commissioning

- Try in-beam thick Pb/Bi filter to lower gamma flash
- Record full EAR configuration in logbook,
- Implement a local (EAR2) reference grid (zero offset)
- Get set of reference samples for EAR2 (Au, Ag, C, U, Fe, others)
- Assign contact persons for each detector
- Optimize pulse shape analysis for each detector
- Make quick analyses with time/amplitude spectra with centralized storage/documentation
- Adjust commissioning programme where necessary

Summary Commissioning EAR1 and EAR2

Frank Gunsing, CEA/Saclay

Thank you for your attention.