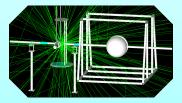
n_**TOF** Findings on the neutron sensitivity from Geant4 simulations

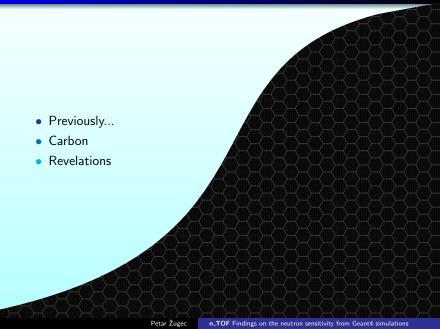
Petar Žugec

Department of Physics, Faculty of Science, University of Zagreb

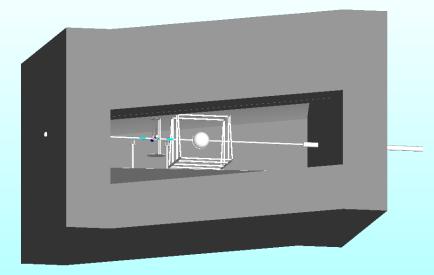
27. November 2013.



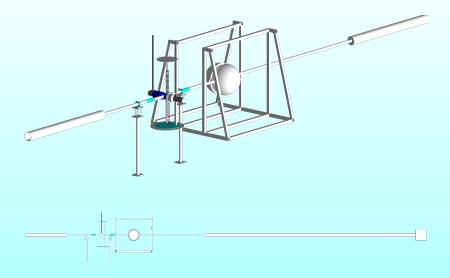
Overview



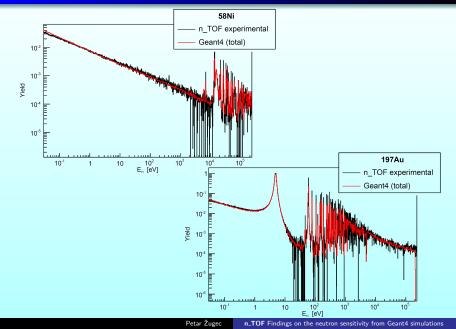
Reminder of what we have...



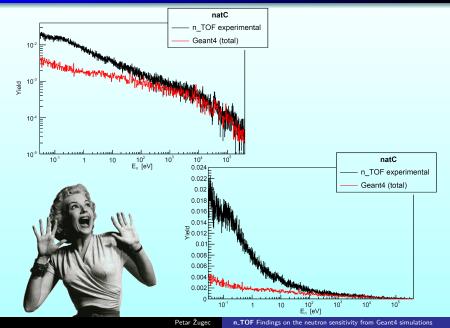
...still of what we have...

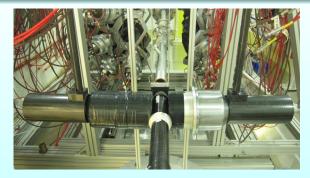


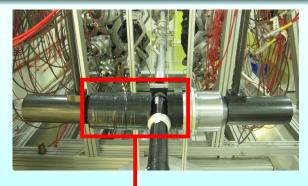
... and what we like!



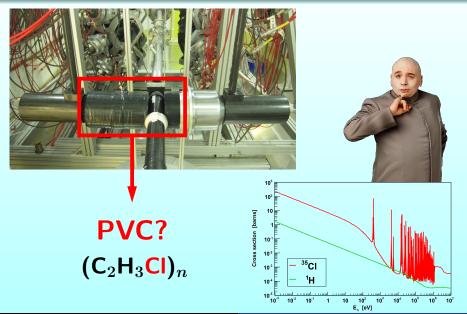
Now, something we didn't like!





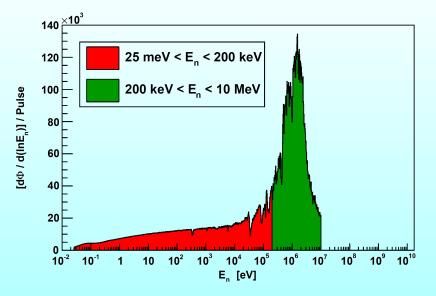


PVC? (C₂H₃Cl)_n

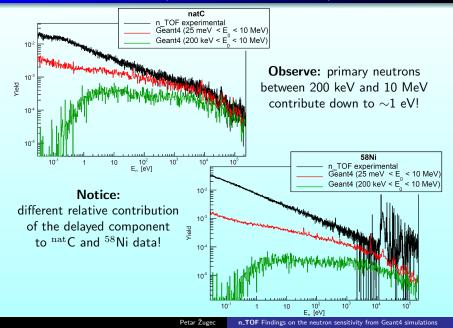


Petar Žugec

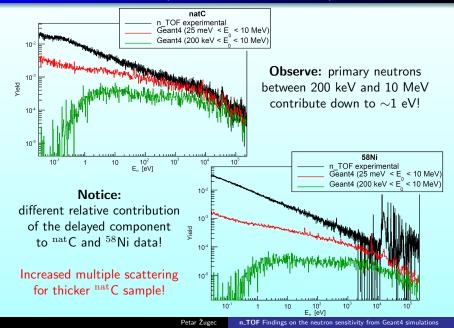
Neutron flux



Delayed component (from above 200 keV)

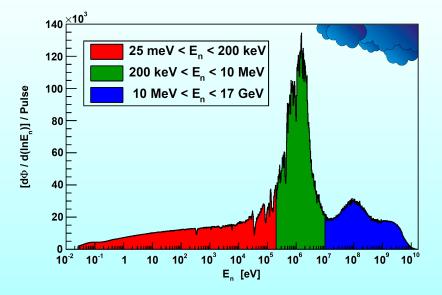


Delayed component (from above 200 keV)

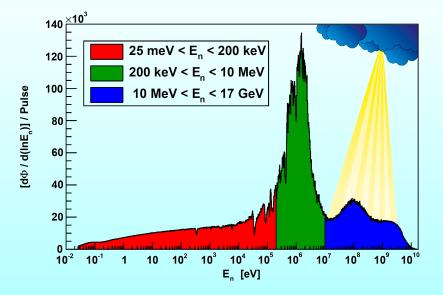


...4 months later...

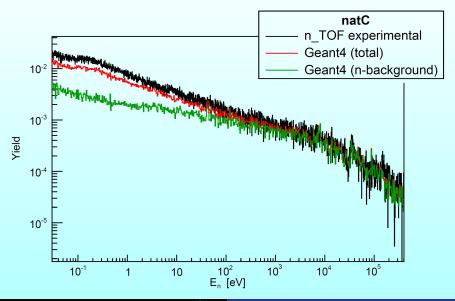
Extended neutron flux



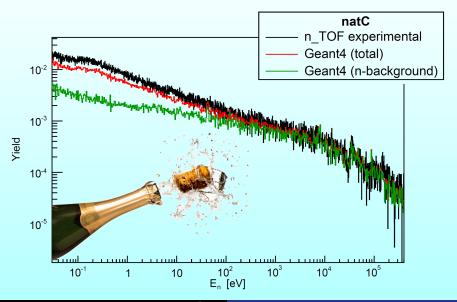
Extended neutron flux



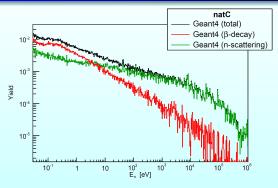
Tadaaaa!

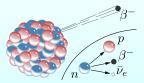


Tadaaaa!

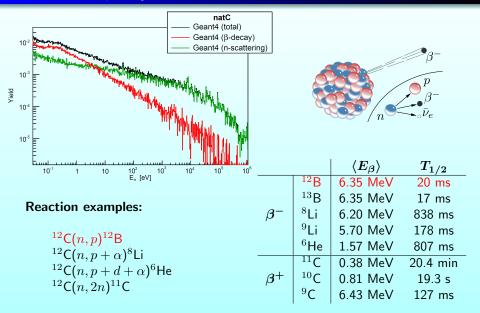


J'accuse... β -rays!





J'accuse... β -rays!



Radioactive decay spectrum

From normalized decay distribution:

$$f(t) = \frac{1}{\tau} e^{-t/\tau}$$

and time-energy correlation:

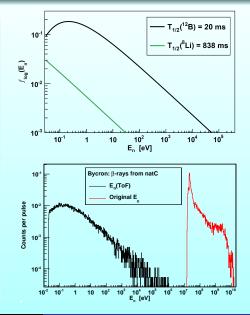
$$E_n = \frac{m_n L^2}{2t^2}$$

defining:

$$\varepsilon \equiv \frac{L}{\tau} \sqrt{\frac{m_n}{2}}$$

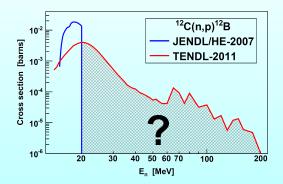
we have:

$$f_{\log}(E_n) = \frac{\varepsilon}{2} \cdot \frac{e^{-\varepsilon/\sqrt{E_n}}}{\sqrt{E_n}}$$



Petar Žugec

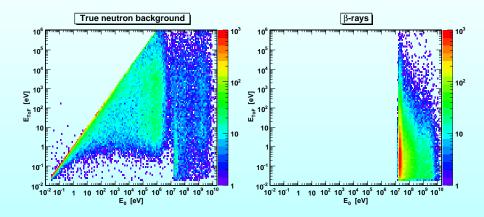
Inelastic scattering cross section



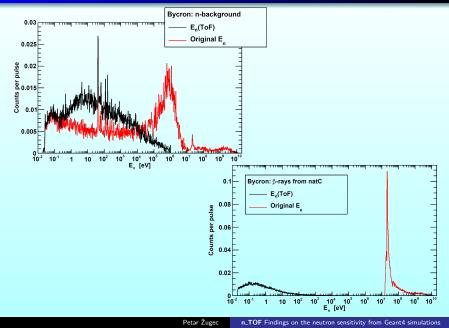
- In Geant4 output data, inelastic reactions (creating β-radioactive isotopes) start contributing at ~15 MeV, strongly increasing at 20 MeV.
- Geant4 high-precision models stop at 20 MeV! Above this energy, parameterizations and limited cross section extensions do exist. However, effective models are used for handling physical interactions.
- Huge discrepancies for dominant ¹²C(n, p)¹²B reaction throughout the evaluated libraries.

Carbon measurements can not be used for evaluating the neutron background below 1 keV!

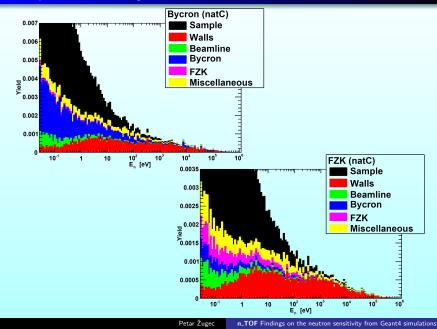
Time-energy correlation



Projections

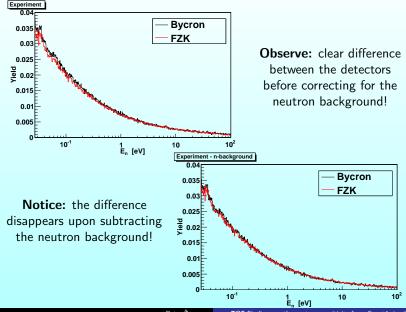


Components analysis

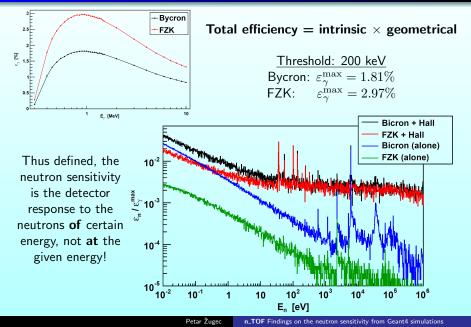


Overview Carbon Sensitivity Cascades Fun fact Summary Backup slides Then Now β -decay Time structure Components

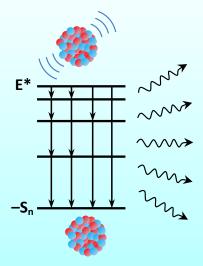
⁵⁸Ni - with and without the neutron background



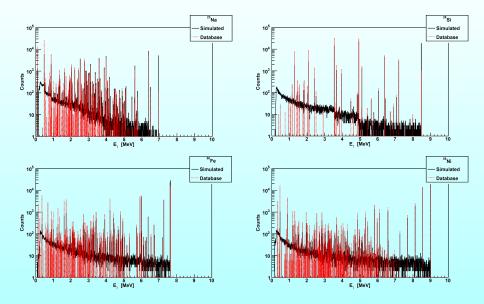
Neutron sensitivity (conventional definition)



γ -cascades



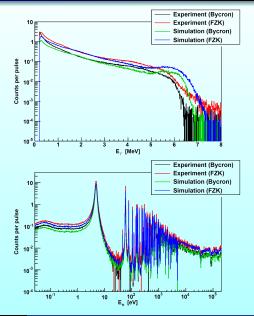
γ -cascades



Petar Žugec

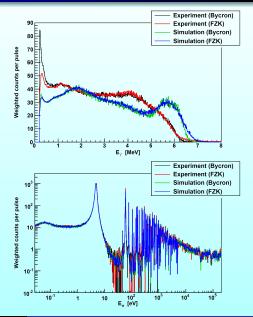
Effect on counts (^{197}Au)

- Due to the lack of γ-correlations, simulated cascade path is different from the experimental one.
- Different γ-distribution affects the average detection efficiency due to the efficiency being dependent on γ-ray energy.
- Consequence: clear difference in the number of simulated and experimental counts!

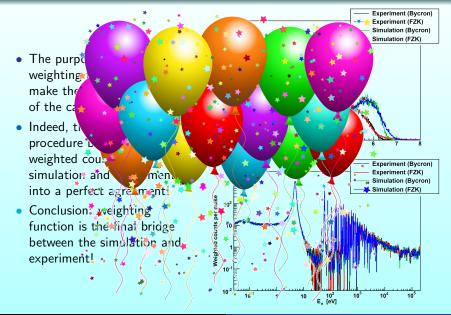


Weighting function saves the day!

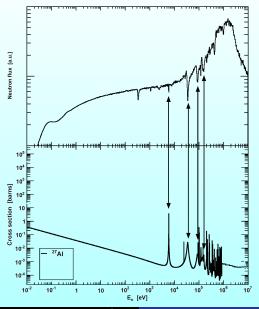
- The purpose of the weighting function is to make the yield independent of the cascade path.
- Indeed, the weighting procedure brings the weighted counts from simulation and experiment into a perfect agreement!
- Conclusion: weighting function is the final bridge between the simulation and experiment!



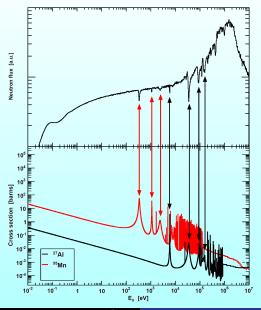
Weighting function saves the day!



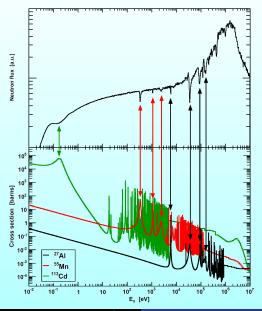
Totally unrelated fun fact



Totally unrelated fun fact



Totally unrelated fun fact



Summary

We have:

- verified the accuracy of Geant4 simulations of the neutron sensitivity (agreement between C data and simulations above 1 keV)
- solved the C mystery below 1 keV (large contribution from ¹²B 20 ms decay)
- investigated and better understood the neutron physics section in Geant4 both at low energy and above 20 MeV

Main conclusions from our work:

- Geant4 can be reliably used to simulate the neutron background from thermal to 1 MeV
- C measurement cannot be used to determine the neutron background below 1 keV
- Bicron C_6D_6 has a neutron sensitivity ~ 10 times larger than the FZK (Al housing)
- the neutron sensitivity of the whole setup is up to a factor of 100 higher than the FZK detector alone (for $E_n>1\ \rm keV)$
- at low energy, the overall neutron background in Bicron $\mathsf{C}_6\mathsf{D}_6$ is more than a factor of 2 higher than the FZK one

A paper on the simulations of the neutron background is in preparation.

Thank you for listening!

Inelastic reactions creating β -radioactive isotopes

Carbon
$$(\beta^+)$$

 ${}^{12}C(n,2n){}^{11}C$
 ${}^{12}C(n,3n){}^{10}C$
 ${}^{12}C(n,4n){}^{9}C$

Boron
$$(\beta^-)$$

 ${}^{12}C(n,p){}^{12}B$
 ${}^{13}C(n,p){}^{13}B$
 $\rightarrow \text{visible }{}^{13}C \text{ content in }{}^{nat}C$

Lithium (
$$\beta^-$$
)
¹²C($n, p + \alpha$)⁸Li
¹²C($n, n + 3p$)⁹Li
¹²C($n, n + 2p + \pi^+$)⁹Li
 \rightarrow above 10 GeV only theoretical
string models are available: even

string models are available: even the (exotic) mesons are created Helium (β^{-}) ¹²C $(n, n + 3p + t)^{6}$ He ¹²C $(n, n + 2p + \alpha)^{6}$ He ¹²C $(n, 2p + d + t)^{6}$ He ¹²C $(n, p + d + \alpha)^{6}$ He ¹²C(n, 3He $+\alpha)^{6}$ He ¹²C(n, 7Be $)^{6}$ He ¹³C $(n, 2n + 2p)^{6}$ He ¹³C $(n, n + p + d + \alpha)^{6}$ He

 \rightarrow does not contribute much to the total yield, but interesting for all of these reactions having been observed in Geant4

Radioactive decay distribution

Starting from a normalized radioactive decay distribution:

$$f(t) = \tfrac{1}{\tau} e^{-t/\tau}$$

probability conservation dictates:

$$f(t)|\mathrm{d}t| = f(E_n)|\mathrm{d}E_n|$$

therefore:

$$f(E_n) = f(t) \left| \frac{\mathrm{d}t}{\mathrm{d}E_n} \right|$$

From a nonrelativistic time-energy correlation (with L = 184 m) it follows:

$$E_n = \frac{m_n L^2}{2t^2} \quad \Rightarrow \quad t = \sqrt{\frac{m_n L^2}{2E_n}}$$

Differentiating:

$$\left|\frac{\mathrm{d}t}{\mathrm{d}E_n}\right| = \sqrt{\frac{m_n L^2}{8E_n^3}}$$

and defining:

$$\varepsilon \equiv \frac{L}{\tau} \sqrt{\frac{m_n}{2}}$$

we are left with:

$$f(E_n) = \frac{\varepsilon}{2} \cdot \frac{e^{-\varepsilon/\sqrt{E_n}}}{\sqrt{E_n^3}}$$

Histogramming over the logarithmic scale, the successive bin widths are increased linearly, amplifying the histogrammed distribution:

$$f_{\log}(E_n) = E_n f(E_n) = \frac{\varepsilon}{2} \cdot \frac{e^{-\varepsilon/\sqrt{E_n}}}{\sqrt{E_n}}$$