Study of ${ }^{234} \mathrm{U}(\mathrm{n}, \mathrm{f})$ fission fragment angular distribution at the CERN n_TOF facility

E.Leal-Cidoncha*, I.Durán, C.Paradela, D.Tarrío
Universidad de Santiago de Compostela (USC)
L.Tassan-Got, L.Audouin, L.S.Leong
IPN-Orsay (France)
(n_TOF Collaboration)

Motivation

The fission fragment angular distributions (FFAD) are needed to:

- Provide information about the nuclei state at the saddle point and the nuclear fission dynamics (Different transition states give different FFAD).
- Calculate the detection efficiency in order to improve the values of the cross section, in particular in the threshold regions.

The ${ }^{234} U(n, f)$ FFAD:

- Large anisotropy values at the fission threshold.
- There are no experimental data above 15 MeV .
- It will allow us to improve the cross section with increased statistics.

The IPN-Orsay PPACs

- The Parallel Plate Avalanche Counters (PPACs) are detectors filled with $\mathrm{C}_{3} \mathrm{~F}_{8}$ at 4 mbar pressure.
- The central anode with a very fast signal response (time resolution 500 ps).
- The two segmented cathodes with Al strips connected to a delay line in order to reconstruct the position of the FF hit.
- The targets, flanked by two PPACS, consist in a thin radioactive layer (~ 0.3 $\mathrm{mg} / \mathrm{cm}^{2}$) deposited in an Al foil ($2 \mu \mathrm{~m}$ and $0.7 \mu \mathrm{~m}$).

Fission
fragment

The IPN-Orsay PPACs

- The Parallel Plate Avalanche Counters (PPACs) are detectors filled with $\mathrm{C}_{3} \mathrm{~F}_{8}$ at 4 mbar pressure.
- The central anode with a very fast signal response (time resolution 500 ps).
- The two segmented cathodes with Al strips connected to a delay line in order to reconstruct the position of the FF hit.
- The targets, flanked by two PPACS, consist in a thin radioactive layer (~ 0.3 $\mathrm{mg} / \mathrm{cm}^{2}$) deposited in an Al foil ($2 \mu \mathrm{~m}$ and $0.7 \mu \mathrm{~m}$).

Fission
fragment

TOF

The IPN-Orsay PPACs

- The Parallel Plate Avalanche Counters (PPACs) are detectors filled with $\mathrm{C}_{3} \mathrm{~F}_{8}$ at 4 mbar pressure.
- The central anode with a very fast signal response (time resolution 500 ps).
- The two segmented cathodes with Al strips connected to a delay line in order to reconstruct the position of the FF hit.
- The targets, flanked by two PPACS, consist in a thin radioactive layer (~ 0.3 $\mathrm{mg} / \mathrm{cm}^{2}$) deposited in an Al foil ($2 \mu \mathrm{~m}$ and $0.7 \mu \mathrm{~m}$).

Fission
fragment

TOF

The IPN-Orsay PPACs

- The Parallel Plate Avalanche Counters (PPACs) are detectors filled with $\mathrm{C}_{3} \mathrm{~F}_{8}$ at 4 mbar pressure.
- The central anode with a very fast signal response (time resolution 500 ps).
- The two segmented cathodes with Al strips connected to a delay line in order to reconstruct the position of the FF hit.
- The targets, flanked by two PPACS, consist in a thin radioactive layer (~ 0.3 $\mathrm{mg} / \mathrm{cm}^{2}$) deposited in an Al foil ($2 \mu \mathrm{~m}$ and $0.7 \mu \mathrm{~m}$).

Fission fragment

TOF

2012 setup

Distribution of targets and detectors:

${ }^{238} \mathrm{U}$ and ${ }^{235} \mathrm{U}$ used as references.

- 2 targets of ${ }^{235} \mathrm{U}(14 \mathrm{mg})$
- 3 targets of ${ }^{234} \mathrm{U}(13.1,13.4$ and 13.6 mg$)$
- 3 targets of ${ }^{238} \mathrm{U}$ (11.5 and 15 mg)
- 1 target of ${ }^{237} \mathrm{~Np}(15 \mathrm{mg})$
- Preliminary results of one ${ }^{234} U$ target analysis are presented.

Figure 1 : stainless steel cylinder

Figure 2: aluminum bottom + detectors and targets

2012 setup

Distribution of targets and detectors:

Detectors (10) \& targets (9)
${ }^{238} \mathrm{U}$ and ${ }^{235} \mathrm{U}$ used as references.

- 2 targets of ${ }^{235} \mathrm{U}(14 \mathrm{mg})$
- 3 targets of ${ }^{234} \mathrm{U}(13.1,13.4$ and 13.6 mg$)$
- 3 targets of ${ }^{238} \mathrm{U}$ (11.5 and 15 mg)
- 1 target of ${ }^{237} \mathrm{~Np}(15 \mathrm{mg})$
- Preliminary results of one ${ }^{234} \mathrm{U}$ target analysis are presented.

Figure 1 : stainless steel cylinder

Figure 2: aluminum bottom + detectors and targets

TOF

Angular range covered

PPACs and targets geometrical disposition with respect to the incident neutron beam:

The overall detection efficiency for both positions is almost the same.

Coincidence detection of the FF

Coincidence events between three consecutive PPACs:

(a) HF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(b) LF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(c) LF passing through the Al backing (${ }^{238} \mathrm{U}$ target).
(d) HF passing through the Al backing (${ }^{238} \mathrm{U}$ target).

TOF

Coincidence detection of the FF

Coincidence events between three consecutive PPACs:

(a) HF passing through the AI backing
(b) LF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(c) LF passing through the Al backing (${ }^{238} \mathrm{U}$ target).
(d) HF passing through the Al backing (${ }^{238} \mathrm{U}$ target).

TOF

Coincidence detection of the FF

Coincidence events between three consecutive PPACs:

(a) HF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(b) LF passing through the Al backing (${ }^{235} \mathrm{U}$ target) ${ }^{300}{ }^{-1}$
(c) LF passing through the Al backing (${ }^{238} \mathrm{U}$ target).
(d) HF passing through the Al backing (${ }^{238} \mathrm{U}$ target).

TOF

Coincidence detection of the FF

Coincidence events between three consecutive PPACs:

(a) HF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(b) LF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(c) LF passing through the Al backing ${ }^{(238} \mathrm{U}$ target)
(d) HF passing through the Al backing (${ }^{238} \mathrm{U}$ target).

TOF

Coincidence detection of the FF

Coincidence events between three consecutive PPACs:

(a) HF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(b) LF passing through the Al backing (${ }^{235} \mathrm{U}$ target).
(c) LF passing through the Al backing (${ }^{238} \mathrm{U}$ target).
(d) HF passing through the Al backing (${ }^{238} \mathrm{U}$ target).

TOF

Coincidence detection of the FF

- The PPAC detectors are almost insensitive to gamma rays.
- Detection in coincidence of both fission fragments in two consecutive PPACs.
- The coincidence method allow us to discriminate the alpha activity and spallation reactions products.

Reconstruction of the FF trajectory

- The Al strips of the cathodes are connected to a delay line, where the signals are propagated, with two preamplifiers at both ends.
- The total delay line length in units of time is 320 ns .
- The FF hit position is obtained from the time difference between the signals reaching both delay line ends.
- The strips in both cathodes are oriented in perpendicular directions (x, y) in order to provide two dimensional information of the position.

Reflections at the connections

Angular distribution

- The knowledge of the FF position in the PPACs (P_{0} and P_{1}) allow us to obtain the emission angle (θ) by reconstructing the FF trajectory.

$$
\begin{aligned}
& \vec{V}_{F F}=\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \\
& \vec{V}_{\text {beam }}=(1,0,-1)
\end{aligned}
$$

- The $\cos \theta$ is calculated as the scalar product of both vectors:

$$
\cos \theta=\frac{\vec{V}_{F F} \cdot \vec{V}_{\text {beam }}}{\left|\vec{V}_{F F}\right| \cdot\left|\vec{V}_{\text {beam }}\right|}
$$

Angular distribution

- Because the ${ }^{234} U(n, f)$ FFAD is isotropic at low neutron energies (below 1 keV), we used it to characterize the detection efficiency of the tilted setup.
- This efficiency factor is used to correct the angular distributions in the full energy range.

TOF

Angular distribution

Preliminary results of one of the three ${ }^{234} \mathrm{U}$ targets.

- The cosine distributions have been parametrized by a sum of Legendre polynomials.
- Only even terms in $\cos \theta$ are considered.

$$
W(\theta)=A_{0}\left[1+\sum_{L=2}^{L_{\text {max }}} A_{L} P_{L}(\cos \theta)\right]
$$

- Fits up to the $2^{\text {nd }}$ and $4^{\text {th }}$ order polynomials have been performed to calculate the coefficients (A_{L}).
- The best fit has been chosen in each energy range depending on the value of chi-square.

Anisotropy parameter

- The anisotropy parameter is used to study the behaviour of the angular distribution with the energy.

$$
A=\frac{W\left(0^{\circ}\right)}{W\left(90^{\circ}\right)}=\frac{1+A_{2}+A_{4}}{1-\frac{1}{2} A_{2}+\frac{3}{8} A_{4}}
$$

Anisotropy parameter

- The anisotropy parameter is used to study the behaviour of the angular
 distribution with the energy.

$$
A=\frac{W\left(0^{\circ}\right)}{W\left(90^{\circ}\right)}=\frac{1+A_{2}+A_{4}}{1-\frac{1}{2} A_{2}+\frac{3}{8} A_{4}}
$$

Anisotropy parameter

- A value of the anisotropy parameter equal to one does not imply an isotropic distribution, but one different to one corresponds to an anisotropic distribution.

TOF

Anisotropy parameter

- A value of the anisotropy parameter equal to one does not imply an isotropic distribution, but one different to one corresponds to an anisotropic distribution.

Status and outlook

Conclusions:

- The method has been proved with ${ }^{232} \mathrm{Th}$ [1] and now with ${ }^{234} \mathrm{U}$.
- The analysis here shown includes only one target of ${ }^{234} \mathrm{U}$.

The preliminary result is in good agreement with previous results up to 20 MeV .

- We are confident to provide FFAD reliable data up to 100 MeV .

Outlook:

- To perform the analysis of the three ${ }^{234} \mathrm{U}$ targets in order to increase the statistics and also to analize the rest of the targets $\left({ }^{235} \mathrm{U}\right.$ and $\left.{ }^{238} \mathrm{U}\right)$.
- To obtain a more precise value of the cross section and the resonance analysis of the ${ }^{234} U(n, f)$.
- Test the recent method [2].
- Planned measurements with ${ }^{231} \mathrm{~Pa}$. Experiment possible date will depend on target manufacture by CACAO-Orsay (probably 2015).
[1] D. Tarrío's Thesis.
[2] L.S. Leong's Thesis.

