### Fission fragment angular distributions and physique mechanism

Lou Sai Leong



27-30/11/2013, Institut de Physique Nucléaire

### Principle of FFAD detection

- Reconstruction of fission angle respect to the beam axis so need of fission fragment tracking
- Discrimination of light particles from fission fragments



- Coincidence method: one detector on each side of the target
- Choice of PPAC.
- Recoil effect is negligible (simulation).

### Fission event identification



## Power of the tracking method Reconstruction of target shape





#### <sup>235</sup>U and <sup>232</sup>Th FFAD for each energy bin, fitted by Legendre polynomials





7

Leven

### Result and Discussions: <sup>232</sup>Th



### FFAD theory: low E\*

 $\overrightarrow{l}$ : Orbital angular momentum.  $\overrightarrow{S}$ : Sum of target and projectile spin.  $\overrightarrow{J}$ : Angular momentum:  $\overrightarrow{J} = \overrightarrow{l} + \overrightarrow{S}$   $\overrightarrow{M}$ : Projection of  $\overrightarrow{J}$  on the neutron beam direction.  $\overrightarrow{K}$ : Projection of  $\overrightarrow{J}$  on the fissioning symmetric axis.

The angular distribution  $W(J, K, M) \approx |d_{K,M}^J|^2$ 





### FFAD theory: higher E\*

$$\begin{split} W^J_{M,U}(\theta) &\approx \sum_{K=-J}^{K=J} |d^J_{M,K}|^2 exp(-K^2/2K_0^2(U)) \\ U \text{ is the thermal excitation energy: } U &= E^* - B_f = a_f T^2. \end{split} \qquad \begin{array}{l} J_{eff} &= J_{\wedge} J_{\parallel} / \left(J_{\wedge} - J_{\parallel}\right) \\ K_0 \gg J_{eff} T \end{split}$$



### Comparison to Ryzhov calculation

Calculation with statistical saddle-point model combined with pre-equilibrium (pre-compound emission of nucleons followed by fission of the heated nucleus)



### Comparison with proton-induced FFAD





#### Deformation 13

 $^{232}$ Th FFAD is related to Z<sup>2</sup>/A



nTOF data: in agreement with Ryzhov calculation Disagreement with Tutin+Ryzhov measurement Follow the fissility systematics: at 40MeV, most of the incident particles are captured.

#### Conclusion

- We have measured the fission fragment angular distribution of <sup>232</sup>Th from threshold to 600 MeV
- Below 10 MeV we are in agreement with previous data and around 14 MeV a better accuracy is achieved
- Between 20 and 100 MeV we find a steeper drop of the anisotropy, compared to Ryzhov data and we are in agreement with his calculation
- The agreement with the fissility systematics indicates that the incoming neutron is captured at 40 MeV

#### ARIGATOU

### **Detector Efficiency**







Tilted geometry  $\rightarrow$  cover all angles.



### **Efficiency Calculation**



Minimization (least square fitting) of

 $N_{ij} = M \times \Delta \Omega_{ij} \times \varepsilon_j \times W(\cos \theta)$ 

$$\sum_{i,j} \left( \frac{M \times \Delta \Omega_{ij} \times \varepsilon_{j} \times (1 + a_{2} \cos^{2} \theta + a_{4} \cos^{4} \theta) - N_{ij}}{\sqrt{N_{ij}}} \right)^{2}$$
  
Over **M**,  $a_{2}$ ,  $a_{4}$ ,  $\varepsilon_{1}$ ,  $\varepsilon_{2}$ , ...,  $\varepsilon_{n}$ 





### Construction of angular distribution



 $dN = W(\cos q) \times \theta(\cos q') \times dW$ 







### Interesting remarks



For the even-even target, the anisotropy in the second opening chance fission is always higher than the third opening chances.

For the odd-mass target, both anisotropy in second and third opening chance fission are very similar <sup>21</sup>















### Deformation



Kinetic energy of fission fragment

In a given neutron incident energy: entire fission process

J: Total angular momentum (conserved)

 $M\!\!:\!\!$  Projection J to space-fixed axis, always beam axis (Z) (conserved)

K: Projection J to symmetric axis, FF direction, (no conserved)->Give information of fission process

l: orbital momentum, direction always confused with plan perpendicular to beam(plan XY) (conserved)

**S**: Target spin, direction isotropic.

 $\mathbf{s}$ : Neutron spin, direction isotropic.

$$\begin{array}{c|c} M & & \\ & J & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$J_{eff} = J_{\wedge}J_{\parallel} / (J_{\wedge} - J_{\parallel})$$
$$K_0^2 = 4\rho J_{eff}T / h^2$$
$$W_{M,K}^J(Q) \sqcup \exp(-K^2 / 2K_0^2)$$

Ekinetic little (l little), target even-even (or odd-odd), S=0 or target even-odd but less S (ex: 3/2) and J=l+s -> l little -> J little -> K little -> isotropic Ekinetic high, target even-even, S=0 and J=l+s -> l high direction on plan(XY) -> J high -> Distribution K (0->J) in

Jeff -> anisotropic

While K little, J high, M high, anisotropie forward-backward While K grand, J high, J direction tend to the symmetric axis -> anisotropie sideward

Ekinetic very high, target even-even, S=0 and J=l+s -> l high direction on plan(XY) -> J high satured -> Distribution K (0->J) in Jeff -> isotropic ?? Compare to Proton

Ekinetic little (l little), target even-odd, S high and J=s+S -> J but no privilege cause target spin is isotropic except polarized -> J all direction-> K all direction -> isotropic

Ekinetic high (l high), target even-odd, S high and J=s+S+J -> same effect than second one-> anisotropic

### Summary

- Introduction
- Nuclear data
- -Fission fragment angular distribution (FFAD)
- Instrumentation
- nTOF
- PPAC
- Analysis
- Detector efficiency
- Simulation method
- New method (self-determination of efficiency)
- Results and discussions
- Comparison to FFAD calculation
- Comparison to proton induced (<sup>232</sup>Th)
- <sup>237</sup>Np cross section validation

### Analysis-First Method Simulation (Diego Tarrio)

- Detected FFAD in  $^{235}$ U = efficiency because emitted FFAD isotropic.
- Build the geometry of two PPAC interleaving a target <sup>235</sup>U.
- Compare the FFAD simulation with experiment distribution.
- Correct the efficiency basing on this simulation for the other actinides.

### Simulation-Geant4

- Geometry: Detectors, targets at 5mbar.
- Isotropic Fission Fragment into the detectors
- Process: Fellow the Fission Fragment tracking slow down in all the layers
- Record energy deposition in each layer for all angles.



The method of simulation seems to save to estimate the efficiency:

$$e_{t \operatorname{arg} et}(\cos q) = e_{235U}(\cos q) \cdot \frac{e_{t \operatorname{arg} et/simul}(\cos q)}{e_{U235/simul}(\cos q)}$$

#### Problems of this method:

- Dependence of simulation
- Target backing thickness uncertainties.



# nTOF Np fission cross section compared to previous measurements



- ENDF-B7.0 based on Tovesson measurement(2008).
- Tovesson's one normalised to ENDF-B6.8 at 14 MeV.
- ENDF-B6.8 based on Lisowski's measurement(1988).
- Lisowski normalized to Meadows (1983) between 1 and 10 MeV
- n TOF measurement consistent with data at 14 MeV within the experimental uncertainty of 4%

Verification of 237Np cross section is necessary





