Tier 3s and Analysis

Amir Farbin University of Texas, Arlington

Overview

- Resources Available for Analysis
- Analysis Model
 - DPDs
 - Mapping to resources
- Tier 3 resource estimation.
 - Question: can we process D¹PDs at tier 3s?
- Managing Tier 3s.

Resources for Analysis

- Tier 1 + 2- Distributed resources accessible only through GRID software/system (eg PANDA):
 - Good: Potentially a large resource. Automatic book-keeping, recovery, etc. Full access to AODs/DPDs.
 - Bad: Large/Sophisticated (Difficulty of use. Reliability. Debugging.) Not interactive. Results need to be collected to another site for interactive analysis. Shared there is competition and we need to manage resource allocation.
- Central Analysis Facilities (BAF, CAF, ...)- Large shared resource (reminiscent of analysis computing at LEP, Tevatron, B-factories, ...) I'm not sure of the size.
 - Good: Access to ESD (?), AOD, DPDs. Data potentially staged to worker-nodes for even faster access (eg via PROOF). Interactive. Results available immediately for interactive analysis.
 - Bad: Shared resource for 100s of physicists → potentially over subscribed. Managed resource allocation. Compute intensive batch processing of DPDs may dominate.
- Tier 3s- Local resources.
 - Good: Interactive. Personal, not shared.
 - Bad: No funding. Difficult to manage/scale properly. Limited resources (ie Disk, CPU). Data must be transferred in.

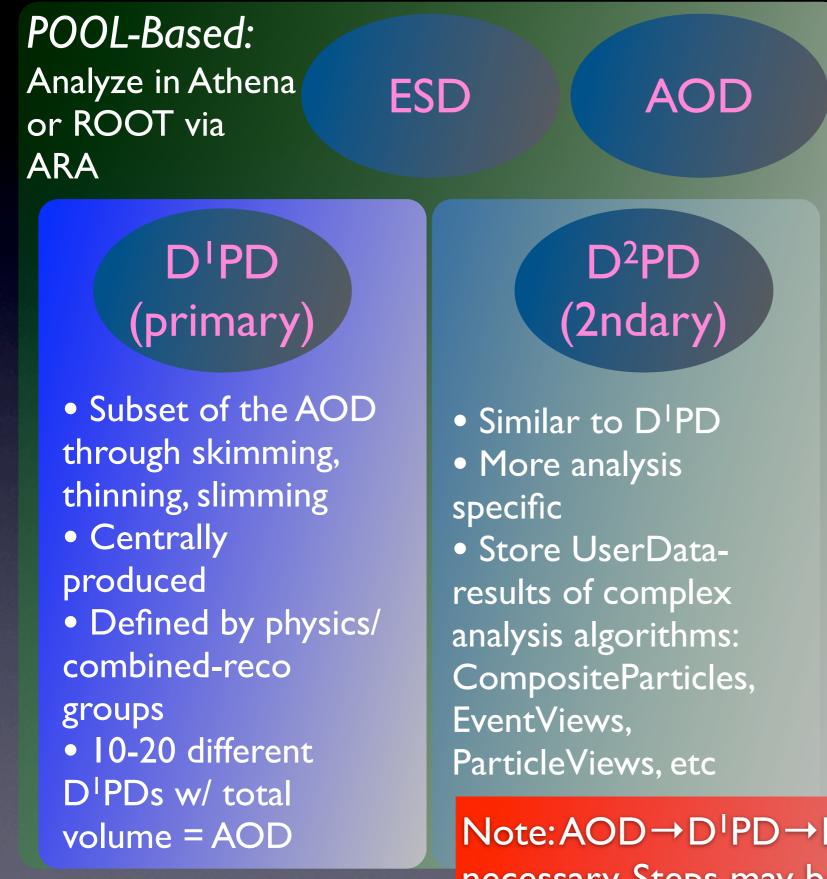
DA on Tier 1/2s not enough?

- To the user, the defining difference between tier 1/2 and CAF/BAF + tier 3 is interactive access.
- Even if all analysis is done using Distributed Analysis tools on GRID, users need a place to login, in order to
 - Develop code, run test jobs
 - Submit large scale analysis to GRID
 - Gather results from GRID and perform final stages of analysis
 - Just do the type of work which is not conducive to GRID processing (eg Toy MCs, fits)
- Tier 2s in general cannot manage user accounts and interactive usage patterns.
 - Though tier 2s are a shared resource, some allow access to local users... unfair?
- CAF, BAF, ... will provide interactive analysis resources (not defined yet)
 - But these will not be at the scale provided in previous generation experiments... cannot fulfill all analysis resource needs.
 - Better reserved for things we cannot do on the GRID or Tier 3: large-scale interactive AOD/DPD analysis, and ESD analysis, calibrations (are these supposed to be at tier 1 instead?).
- Tier 3 fills in the hole... local resources used for local needs.

Other Realities

- Processing times are currently significantly longer than Computing Model (Simulation: > factor of 5. Reco: factor of 2)
- Event Data sizes are currently larger than expected (~ factor of 2 for AOD)
 - There is hope that AOD sizes can be bought within budgets
- AMF Report: Suggests that D¹PDs occupy same volume as AOD. Can potentially mean less replicas of AODs.
- We also need to store D^2PD/D^3PD .
- To cope with these pressures, the analysis capacity of tier 1/2 has been reduced in CM
 - Ultimate result: Analysis is being pushed from tier $I \rightarrow 2 \rightarrow 3...$
- We do not have a tier 3 model (role/size?).
- Tier 3 funding?
 - Technically there is no funding in the US for tier 3s!
 - Tier 3 size is not necessary set by requirements. It is set by what YOU can afford and manage.

Analysis Activity


- Re-reconstruction/re-calibration- CPU intensive... often necessary.
- Algorithmic Analysis: Data Manipulations $ESD \rightarrow AOD \rightarrow DPD \rightarrow DPD$
 - Skimming- Keep interesting events
 - Thinning- Keep interesting objects in events
 - Slimming- Keep interesting info in objects
 - Reduction-
 - Application of algorithms: combinatorics, overlap-removal, kinematic fitting, sphericity calculation...
 - Encapsulation of the results into higher-level objects
 - Basic principle: Data Optimization + CPU intensive algs → more portable input & less CPU in later stages.
- Interactive Analysis: Analysis Development. Debugging. Making plots/ performing studies on highly reduced data.
- Statistical Analysis: Perform fits, produce toy Monte Carlos, calculate significance.

- Tier 1/2 Activity
 - Framework (ie Athena) based
 - Resource intensive
 - Large scale (lots of data)
 - Organized
 - Batch

Primary difference

- Tier 3 Activity
 - Often exoframework
 - Interactive

Evolution of DPDs

"Flat": Analyze in plain ROOT

> D³PD (tertiary)

Maybe similar in content
 to D¹PD or D²PD

But most likely highly reduced

 Just the few quantities necessary to quickly make the final plots for your analysis

 Complex analysis on D³PD is discouraged

Format is proprietary

Note: $AOD \rightarrow D^{1}PD \rightarrow D^{2}PD \rightarrow D^{3}PD$ chain is not necessary. Steps may be skipped.

Analysis Activity • At Tier 3 if input/ Placement

 Centalized/Organized Requires AOD access Possible at BAF if AOD available... but better on Tier I/2

 Tasks which require more info than D¹PD (eg rereconstruction, jetfinding, calibration) • Group-wide/ personal

out fits and sufficient CPU to have reasonable processing time.

 $D^{1}PD \rightarrow D^{2}PD/$

CAF/BAF

AOD→Plots_

 Great for firstdata and algorithm developement/ tuning. • Not practical for lots of data.

 $D^{I}PD \rightarrow Plots$

 $D^2PD/$

 $D^3PD \rightarrow Plots$

Tier 3

D³PD Tier I/2 $D^2PD \rightarrow D^3PD$ • Where the analysis heavy-• Likely to be lifting occurs. highly iterative

AOD→D'PD

 $AOD \rightarrow D^2PD/$

D³PD

Physicist's Analysis Model

- The defined (by us) and adopted (by users) Analysis Models will always be at odds.
 - We anticipate their issues and try to scale.
 - Users vote with their feet... we adjust.
- Elements worth considering when trying to estimate analysis resources:
 - Raw numbers: DPD size, CPU use per event,
 - Inefficiency:
 - Physicists will likely first try to do things locally (eg BAF or Tier 3)... hunt for bigger resources when they have saturated their existing ones.
 - Hard to anticipate all requirements:
 - Preference for delaying decisions as much as possible. Only throw out info when run out of space.
 - Analysis will start simple... quickly become complex... procedures/ implementation won't scale well... redesign personal Analysis Model.
- AMF Report is a good example...

"AMF Report" Analysis Model

- 10-20 Centrally produced "Primary" DPDs (aka D¹PD) with total volume = AOD.
 - D¹PD:AOD volume reduction based on **simple** requirements.
 - No strict decisions like electron ID or overlap-removal.
 - Mostly reduction by throwing out containers of not need objects (eg tracks or clusters) and skimming.
 - In response to:
 - Strict selections made before DPD making for CSC analyses make iterations difficult.
 - Inability to quickly remake & download DPD... GRID DA is inconsistent with the *natural* iterative cycle of analysis.
 - Dislike + lack of familiarity with athena-based analysis tools.
 - Coupled with AthenaROOTAccess, users can go from AOD/D¹PDs directly to histograms/results.
- Why D²PDs and D³PDs?
 - D¹PDs will in general be large and very little analysis will go into them... so analysis on D¹PDs may be resource intensive.
 - Must store the output of D^1PD analysis as D^2PDs and D^3PDs so you can iterate faster.

The benefits of D^IPDs

- First pass Event Selection (Skim) and Event Data content organized at physics/ performance group level.
 - Great means of organization of analysis activity.
 - Centralized D¹PD production is a good place for re-reconstruction/recalibration.
- Faster per event processing of D¹PDs vs AODs.
 - Observed/reported by people... though the why and how is not understood (points to a problem with athena).
- Each D¹PD stream has 10-20 times smaller volume than AOD
 - Smaller files may help with data staging to worker nodes at the tier 2s.
 - D¹PD streams may fit at tier 3s
 - Can off-load some of the tier 2 load to tier 3s.
 - People prefer working locally.
- Great means of directly looking at large amounts of data locally. Likely very important for very early data.

Another View of D^IPDs

- Why create D¹PD?
 - If you are on a tier 2, the D¹PD provides little added value:
 - All AOD is present on tier 2s.
 - Skimming can be achieved using TAG... don't read any events you don't want.
 - No per event speed improvements: athena only reads in containers you request.
 - So why have the D¹PDs space compete with AOD?
- Answer: Since the D¹PD volume is 10-20 times smaller than the AOD, you can transfer it to a tier 3 and do all your analysis using ROOT + AthenaROOTAccess.
 - Essentially the D¹PD is a mechanism of moving what we imagined was AOD analysis to tier 3s.
 - The promise that you may escape using Athena and GRID is very appealing...
 - Huge implications on Tier 3. Big question: can D¹PD analysis be done at Tier 3?
- In the long-run, it may not be worth letting DPD compete with AOD for space.

Defining Tier 3s

- Considering:
 - Analysis Model: A primary benefit of D¹PDs is that users can in principle move AOD analysis to tier 3s.
 - Computing Model: Resource constraints result in reduction in analysis resources... to be picked up on tier 3s.
- Ask Questions:
 - How much resources do you need to process D¹PDs at tier 3s?
 - Disk: Does the data fit?
 - CPU: Is there enough CPU to process it within reasonable time frame?
 - DDM/Network:
 - Can the D¹PD be brought to tier 3 within appropriate time frame?
 - Can the DDM handle the traffic?

D'PDs at Tier 3s (Disk)

FDR Feedback

Size (in kB/event) considering one FDR08 run at a low

luminosity (10⁺³¹/cm²/s): run 3050 (0.036/pb, 30 lumi-blocks of 2mn

each). The following numbers are based on this tag: o1_r6_t1.

	Egamma	Muon	Jet	Signal (top)	Atlfast	
	Lgamma	Maon	001		Athaot	
AOD	162.2	172.9	163.5	390.4	40.5	
	6785	3491	17407	545700		
	1.1GB	0.603GB	2.85 GB	212 GB	FDR Feedb	ack
	30GB/pb	16.2GB/pb	79.2GB/pb		A realistic	appro
					FDR2 exer	rcise:
D2PD	17.5	14.3	18.4	31.8	2.4 - rui	n on th
	0.117GB	0.051GB	0.311GB	18GB	- str	ore the
	3.25GB/pb	1.41GB/pb	8.64GB/pb		analysis re	

- D¹PDs are 5-10% of AOD. Nominally AODs are 100TB/year → 5-10TB per D¹PD
 - D¹PD ~ 1/3 of present AOD contents to get full functionality of some present AOD analyses.
 - Suggests 15-30% skim of data in each D¹PD.

A realistic approach that we will check once more with the coming FDR2 exercise:

- run on the AOD datasets on the GRID

- store the produced D2PD on the Tier3 and access them for analysis refinement.

- From Nabil Ghodbane Top DPD
 - Current D¹PD already too big for tier
 3... yet not enough info for full analysis.
 - D²PD: I3.3 GB/pb. I.3 TB for I00/pb.

Unknown issues: so far, with the current EDM, reaching a significant fraction of an AOD size requires dropping trigger, cluster information, etc...(This is the case for TopPhysDPDMaker, the Top WG D1PD tool)

How will this evolve with trigger EDM ?

Question: Will in the end D1PD be simply dropped for D2PD production directly from AODs? (is CPU cheaper that DISK ?)

CPU For D^IPD Processing

- CPU Usage scales with number of events and how much data is read (not coupled to size of AOD/ DPD)
- Difficult to estimate CPU needs... depends on task.
 - Some calibration/re-calibration tasks... eg jet finding.
 - Selection, matching, overlap-removal, combinatorics, kinematic fitting, variable calculation, ...
 - My old estimates (2 years ago) suggested O(100 ms)/event for realistic analysis... 20 ms/event cutting all inefficiencies.
 - Currently estimates from Top (Nabil) and SUSY (Renaud Bruneliere) of simple analyses (w/ selection, overlap removal) point at ~ 2-3 ms/event.
 - For today, I'll guess 10 ms/event.
- Basic (Trivial) numbers (mistake in table):

Percent of I year's data processed:

Processing time (ms)	Rate (Hz)	Ignore!			% per night per 100 cores
1	1000	0.288%	2.880%	28.800%	All
2	500	0.144%	1.440%	14.400%	All
10	100	0.029%	0.288%	2.880%	28.800%
100	10	0.003%	0.029%	0.288%	2.880%

Processing time depending vs % of AOD read.

% AOD Read	Rate (Hz)	Processing time (ms)
1	5000	0.2
10	500	2
20	250	4
30	166.67	6
50	100	10
100	50	20

How many CPUs?

- Consider the percentage of I year's data (10⁹ events) processed by N cores.
- No CPU usage, pure I/O. Reading all D¹PD contents (30 Kb/event). Perfect hardware.
- 25 cores → I analysis iteration by afternoon.

Cores	1	25	100	1000
1 Hour	0.11%	2.72%	10.88%	All
Overnight	1.31%	32.63%	All	All
1 Week	18.27%	All	All	All
1 Month	78.31%	All	All	All

Cores	1	25	100	1000
1 Hour	0.02%	0.52%	2.08%	20.81%
Overnight	0.25%	6.24%	24.97%	All
1 Week	3.50%	87.40%	All	All
1 Month	14.98%	All	All	All

- What we see today for simple analysis:
 - Reading 10% of AOD, writing 1%.
 - 2 ms/event processing.

10 (wrong in talk) ms/
event, writing D ² PDs

 25 cores → I analysis iteration in I day.

Cores	1	25	100	1000
1 Hour	0.12%	2.90%	11.61%	All
Overnight	1.39%	34.84%	All	All
1 Week	19.51%	All	All	All
1 Month	83.61%	All	All	All

Moving D¹PDs to Tier 3s

- Network: AMF calls for D¹PDs produced at tier 1/2's, once a month. (or 4x a year?)
 - Full D¹PD stream is 5-10 TB.
 - Assuming each site will download one D¹PD and O(100) Tier 3s (ie ~3 Tier 3s per Tier 2), can DDM/network transfer 500-1000 TB to tier 3s once a month?
 - Apparently the answer is yes!

Practicalities

• Disk:

- One 5-10TB D¹PD stream is not sufficient.
- Need data and MC, and multiple versions.
- Since processing takes time, also need to make/store D^2PD/D^3PDs .
- Easy to argue that a tier 3 needs at least 20-40TB/year to be able to process D¹PDs.
- Many worry that tier 3s cannot handle managing this much disk.
- CPU:
 - 25 Core Tier 3 takes ~ I days for one iteration of D¹PD analysis (at 100 ms/event).
 - Clearly D¹PD analysis shouldn't simply make plots... iterations must be faster. So must make D²PD, D³PDs.
 - Need to process D^2PD , D^3PDs too! This isn't instant... but a few cores are sufficient.
- My numbers are very simplistic. They will not scale linearly...
- Bottom line: Tier 3 which wish to process D¹PDs need lots of resources.
 - Non-trivial to setup and efficiently operate a tier 3 of this scale.

What does a Tier 3 looks like?

- 2 types of tier 3:
 - The GRID tier 3:
 - Begins by providing GRID services in order to opportunistically offload pressure from tier 1/2.
 - Eventually provides interactive access to local users, with work areas, batch queues or PROOF... and support.
 - This could be a GRID side that give local access, or a departmental cluster that adds GRID services.
 - The local tier 3:
 - Focus on interactive access to local users... may start very small.
 - Over time grows from a few machines to size that may be worth offering to the GRID.
 - This could be a few multi-core desktops + disks

ATLAS Tier 3

- Many ATLAS tier 3 sites today are the first type... run GRID services, needs to implement interactive access.
- Unfortunately providing interactive access usually requires support people at local institution.
- Need to partition off interactive machines, setup accounts, provide home/data disks, install software, make sure experiment software runs, setup queues or PROOF.
- At UTA we are exploring how to turn our DPCC cluster (old D0 farm) into a real tier 3:
 - Disk aggregation with xrootd
 - User accounts, queues, proper environment setup
 - PROOF
- We are also exploring using Virtual Machines to simplify setting up tier 3s.
 - No need to install OS, etc... just run VMs.
 - Opportunistic use of University resources (eg Windows machines in labs)... best for simulation.
- Goal is to explore possibilities and the provide recommendation on configuration and detailed instructions for others to follow.
- Exploring how to remotely provide interactive support to local users at other sites.

Comment on Simulation

- Many Tier 3s want (or already do) to contribute to simulation production.
- Running simulation on tier 3s and opportunistic resources is easier than running analysis (less data required).
- If analysis resources at tier 2s are scarce, we may want to rely on tier 3 and opportunistic resources for simulation.
 - Better for analysis because the data is already at tier 2s.

Final Remarks

- If the analysis model and computing constraints are pushing for processing D¹PDs at tier 3s, then tier 3s must be rather large.
 - You'll need funds for equipment... and need a person to manage it.
 - Big Universities and Labs may have the means... but small ones need to plan.
 - You can't just stick machines into racks.
- No matter what, D¹PD analysis will take time, so we will need D²PDs and D³PDs.... and a place to analyze them (ie tier 3s).
- Alternative is processing D^1PDs into D^2PDs on tier 1/2s.
 - Must make sure there are sufficient resources on tier 1/2.
- We shouldn't forget the role of tier 3s which will not be fulfilled elsewhere:
 - Interactive analysis... presumably of D²PDs and D³PDs.
 - Toy MCs, fits...
- Setting up and maintaining Tier 3s will be non-trivial. We need to organize and consider technologies like VMs.