Status of pQCD calculations from Jyväskylä Workshop on Saturation Signals, Utrecht

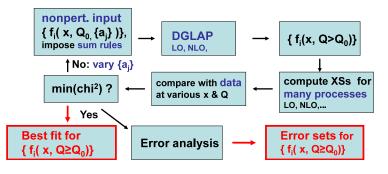
Ilkka Helenius

In collaboration with Hannu Paukkunen and Kari J. Eskola

> University of Jyväskylä Department of Physics

> > 23.10.2013

Outline


- Introduction
 Nuclear PDFs
- Photon production in pQCD
 - Prompt photons
 - Isolation
- \bigcirc x_2 sensitivity of inclusive and isolated photons
 - mid-rapidity
 - forward rapidity
- 4 Results
 - Nuclear modification factor
 - Centrality dependence
- 5 Summary & Outlook

Parton Distribution Functions (PDFs)

Collinear Factorization framework

$$\mathrm{d}\sigma^{pp\to k+X} = \sum_{i,j,X'} f_i(x,Q^2) \otimes f_j(x,Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'} + \mathcal{O}(1/Q^2)$$

• $f_i(x, Q^2)$ determined through global analysis:

[from K.J. Eskola]

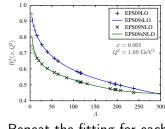
Nuclear PDFs

 $\bullet~$ PDFs modified in nuclear collisions \Rightarrow Nuclear PDFs (nPDFs)

$$f_i^A(x,Q^2) = R_i^A(x,Q^2) \cdot f_i^N(x,Q^2)$$

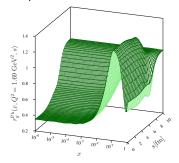
- Nuclear modifications $R_i^A(x,Q^2)$ also from global analysis
- Here we use EPS09 nPDFs with the error sets

Gluon modification poorly constrained in present fits
More constraints from prompt photon data?

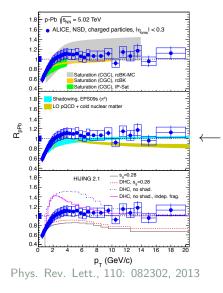

Spatially dependent nPDFs

We have published also spatially dependent nPDF sets, e.g. EPS09s [I.H, Eskola, Honkanen, Salgado *JHEP* 07 (2012) 073]

• Assume a power series from for $r_i^A(x, Q^2, \mathbf{s})$:


$$r_i^A(x, Q^2, \mathbf{s}) = 1 + \sum_{j=1}^n c_j^i(x, Q^2) [T_A(\mathbf{s})]^j$$

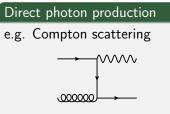
• Use A dependence of EPS09 to get values for $c_j^i(x, Q^2)$



Repeat the fitting for each parton flavors

Outcome: Spatially dependent nPDFs

p+Pb collisions at the LHC

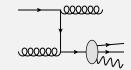

p+Pb pilot run in 2012

- ALICE measurement for charged particles
- Minimum bias result = averaged over all centralities

Our π^0 prediction (*JHEP* 07 (2012) 073) consistent with the data

Prompt photon production

• Prompt photons consists of two components:



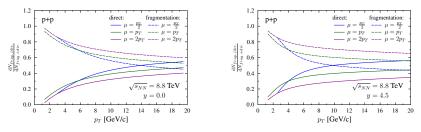
- Calculated from pQCD
- Provides a direct probe to the gluon PDFs
- Naive LO approximation:

 $x_2 \sim \frac{2p_T}{\sqrt{s}} \mathrm{e}^{-y}$

Fragmentation photon production

parton fragments into photon, e.g.

- Calculated with non-perturbative fragmentation functions

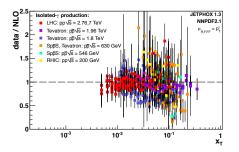

$$p_T^{\,\prime} = z \cdot p_T^{
m P}$$
,
typically $\langle z
angle \sim 0.5$

• Two components experimentally indistinguishable

Direct vs. fragmentation photons

- The relative contribution from direct and fragmentation
- At mid-rapidity

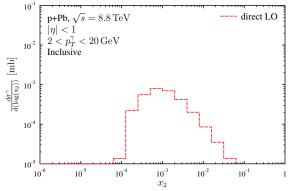
• At forward rapidity


- In NLO the division scale dependent
- At low p_T the fragmentation photons dominate
- Similar behaviour in mid- and forward rapidities
- We use BFGII FFs for photons and CTEQ6.6 or CT10 proton PDFs

Isolated photons

- Isolation cut reduce the background from hadronic decays:
 - Reject photons which have $\sum E_T^{had} > E_T^{max}$ inside a cone

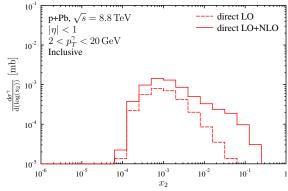
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$


• Isolation cut reduces also fragmentation photons \Rightarrow Isolated photons more sensitive to smaller x values

• Good agreement with NLO pQCD and data in wide range of \sqrt{s}

[d'Enterria, Rojo *Nucl.Phys.* B860 (2012) 311-338]

• The inclusive NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

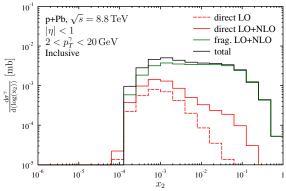


• The LO direct component follows the naive expectation

$$x_2 \sim \frac{2p_T}{\sqrt{s}} e^{-y} \approx 7 \cdot 10^{-4}$$

 \bullet some spread due to a finite p_T and η interval

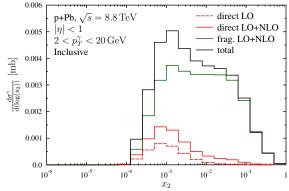
• The inclusive NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)


• NLO corrections introduce more channels (e.g. $2 \rightarrow 3$) \Rightarrow Contribution also from higher x_2 values

• The inclusive NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

- $\bullet\,$ The peak is shifted to higher x_2 due to the z<1
- $\bullet\,$ Large contribution from higher x_2 values from the fragmentation component

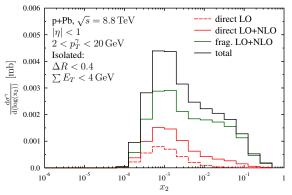
• The inclusive NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)



- Fragmentation component dominant in this kinematical region
- $\bullet\,$ Contribution to total inclusive NLO prompt photon cross section from a broad range of x_2
- How much does isolation suppress the fragmentation component?

Workshop on Saturation Signals, Utrecht 23.10.2013

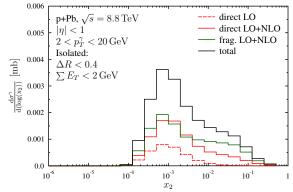
x_2 distribution and isolation criteria


• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

- ullet Same result as before but now with linear scale in $\mathrm{d}\sigma^\gamma$
- $\bullet~{\rm For~inclusive~photons}~\frac{\sigma_{dir}^{\gamma}}{\sigma_{tot}^{\gamma}}\approx 0.17$

x_2 distribution and isolation criteria

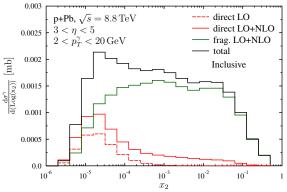
• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)



• Isolation suppresses fragmentation component especially from larger x_2 values (small z)

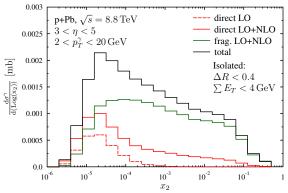
• For
$$E_T^{max} = 4 \,\mathrm{GeV}$$
 we have $\frac{\sigma_{dir}^{\gamma}}{\sigma_{tot}^{\gamma}} \approx 0.28$

x_2 distribution and isolation criteria


• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

- Further suppression with smaller E_T^{max}
- For $E_T^{max} = 2 \, {\rm GeV}$ we have $\frac{\sigma_{dir}^{\gamma}}{\sigma_{tot}^{\gamma}} \approx 0.43$
- Small increase of the direct NLO contribution with isolation

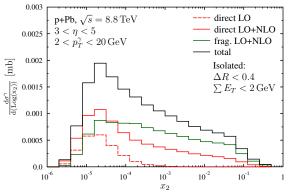
x_2 distribution in forward rapidities


• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

- Forward rapidities probe smaller x_2 values
- Large contribution from larger x_2 values due to fragmentation
- For inclusive photons $\frac{\sigma_{dir}^{\gamma}}{\sigma_{tot}^{\gamma}} \approx 0.21$

x_2 distribution in forward rapidities

• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)

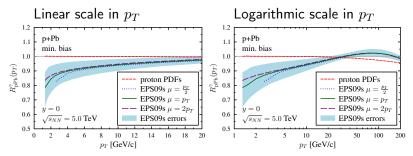


• Isolation suppresses the fragmentation in large x_2 region

• For
$$E_T^{max} = 4 \, {\rm GeV}$$
 we have $\frac{\sigma_{dir}^{+}}{\sigma_{tot}^{\gamma}} \approx 0.30$

x_2 distribution in forward rapidities

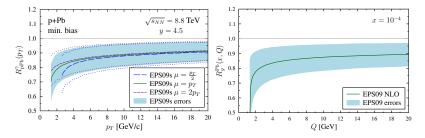
• The NLO cross section of prompt photons for p+Pb collisions, calculated using JETPHOX 1.3.1_1 ($\mu = p_T$)



• Even with $E_T^{max} = 2 \,\text{GeV}$ some contribution also from larger x_2

• For
$$E_T^{max} = 2 \, {\rm GeV}$$
 we have $\frac{\sigma_{dir}^{\gamma}}{\sigma_{tot}^{\gamma}} \approx 0.44$

• $R_{\rm pPb}$ for inclusive prompt γ at $\sqrt{s_{NN}}=5.0\,{\rm TeV}$ and y=0 in NLO (with INCNLO)


[I.H., K.J. Eskola, H. Paukkunen JHEP 1305 (2013) 030]

- Suppression at $p_T < 20 \, {\rm GeV}$ due to shadowing in the nPDFs
- Isospin effect negligible (red dashed line)
- Some scale dependence in $p_T < 5 \,\mathrm{GeV}$

R_{pPb} at forward rapidities

• $R_{\rm pPb}$ for inclusive prompt γ at $\sqrt{s_{NN}} = 8.8 \,\mathrm{TeV}$ and y = 4.5 in NLO (with INCNLO) [I.H., K.J. Eskola, H. Paukkunen work in progress]

- More suppression than at y = 0 due to lower x_2 values
- Very rapid scale evolution in $R_g^{pPb}(x, Q^2)$ from NLO DGLAP \Rightarrow No factor 2 suppression even at the lowest p_T

R_{pPb} at forward rapidities

• We have also studied whether the planned forward calorimeter in ALICE could provide further constraints for the nPDFs:

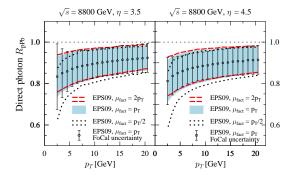
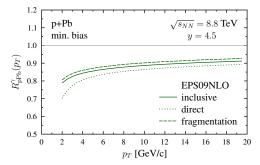
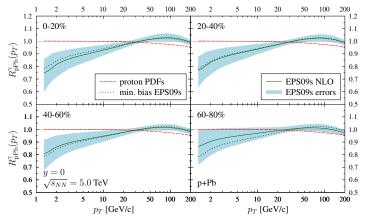



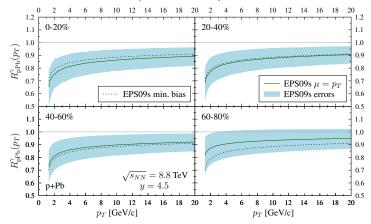
Figure from H. Paukkunen, relative error estimates from M. Leeuwen

• Estimated errors of the same order than in the EPS09 nPDFs \Rightarrow Not clear how much the data could reduce the uncertainty


• $R_{\rm pPb}$ for inclusive prompt γ at $\sqrt{s_{NN}} = 8.8 \,\mathrm{TeV}$ and y = 4.5 in NLO [I.H., K.J. Eskola, H. Paukkunen *work in progress*]

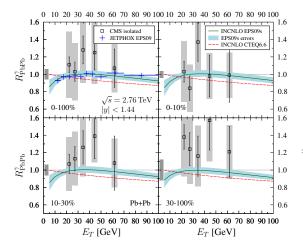
- Isolation increase the relative contribution from direct photons \Rightarrow Isolated $R_{\rm pPb}$ closer to $R_{\rm pPb}$ with direct component only
- Work in progress...

Centrality dependent $R_{\rm pPb}$ at y=0


 $R_{\rm pPb}$ for prompt γ at $\sqrt{s_{NN}} = 5.0 \,\text{TeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [I.H., K.J.E., H.P. JHEP 1305 (2013) 030]

• Nuclear effects stronger in central collisions than in peripheral collisions

Centrality dependent $R_{\rm pPb}$ at y = 4.5


 $R_{\rm pPb}$ for prompt γ at $\sqrt{s_{NN}} = 8.8 \,\mathrm{TeV}$ and y = 4.5 in four centrality classes in NLO (with INCNLO) Work in progress

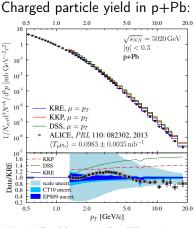
• Larger suppression than at y = 0 for $p_T < 20 \,\text{GeV}$ \Rightarrow Centrality dependence more apparent

Prompt γ production in Pb+Pb

 $R_{\rm PbPb}$ for inclusive γ at $\sqrt{s_{NN}} = 2.76 \,\mathrm{TeV}$ and |y| < 1.44 in different centrality classes in NLO [*JHEP* 1305 (2013) 030]

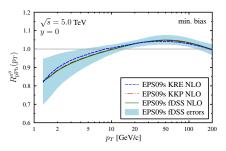
- CMS data for isolated and calculation for inclusive photons
- Isolated (JETPHOX) and inclusive (INCNLO) $R_{\rm PbPb}^{\gamma}$ compatible in min. bias
- \Rightarrow Comparison ok
 - Note smaller nPDF uncertainties than in CMS paper [*Phys.Lett.* B710 (2012) 256-277]

Summary & Outlook


Summary

- $\bullet\,$ The prompt photons have a large contribution from fragmentation component at low p_T
- Isolation cut suppresses the fragmentation contribution \Rightarrow Isolated photons probe smaller x_2 values in p+Pb collisions
- \bullet We expect slightly more suppression for isolated photon $R_{\rm pPb}$ than for inclusive photons
- Centrality dependence more apparent at forward rapidities

Outlook


- $\bullet\,$ Calculate the $R_{\rm pPb}$ for isolated photons at mid- and forward rapidities
- Publish our results for particle production at forward rapidities (during this year?)
- New nPDF fit with the p+Pb data?

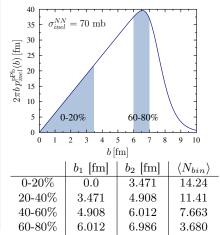
Backup

I.H., H.Paukkunen., D. d'Enterria *Work in progress*

Nuclear modification factor:

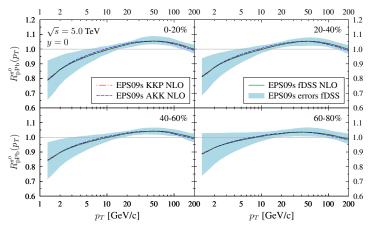
- Data best described with Kretzer fragmentation functions
- Differences in dN cancel out in ratio $R_{\rm pPb}$

 $\Rightarrow {\it R}_{\rm pPb}$ not sensitive to FFs


Centrality classes

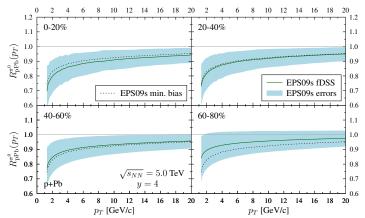
Optical Glauber Model

- Probability for inelastic collision $p_{inel}^{AB}(\mathbf{b}) \approx 1 \mathrm{e}^{-T_{AB}(\mathbf{b})\sigma_{inel}^{NN}}$
- Inelastic cross section for $[b_1, b_2]$ $\sigma_{inel}^{AB}(b_1, b_2) = \int_{b_1}^{b_2} d^2 \mathbf{b} \, p_{inel}^{AB}(\mathbf{b})$
- For p+A we assume a point-like proton $\Rightarrow T_{pA}(\mathbf{b}) = T_A(\mathbf{b})$
- $T_A(\mathbf{s})$ from Woods-Saxon density:


$$\rho_A(\mathbf{s}, z) = \frac{n_0}{1 + \exp[\frac{\sqrt{\mathbf{s}^2 + z^2 - R_A}}{d}]}$$

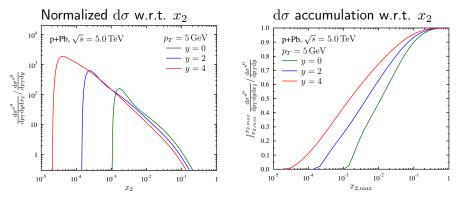
• Example: p+Pb at the LHC $\sqrt{s_{NN}} = 5.0 \text{ TeV}, \sigma_{inel}^{NN} = 70 \text{ mb}$

π^0 production in p+Pb at y=0


• $R_{\rm pPb}$ for inclusive π^0 at $\sqrt{s_{NN}} = 5.0 \,\mathrm{TeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [JHEP 1207 (2012) 073]

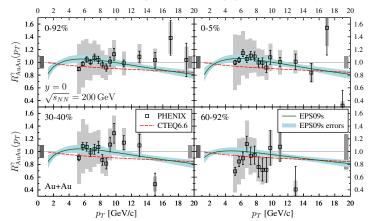
• Stronger nuclear effects in central collisions

π^0 production in p+Pb at y=4


• $R_{\rm pPb}$ for inclusive π^0 at $\sqrt{s_{NN}} = 5.0 \,\mathrm{TeV}$ and y = 4 in four centrality classes in NLO (with INCNLO) [Work in progress]

• More suppression at small p_T than at y = 0

x_2 values for different rapidities


• Which x_2 values different rapidities probe?

• Contribution to $d\sigma$ from broad x_2 range also at forward rapidities [Work in progress]

Prompt γ production in Au+Au at y = 0

• R_{AuAu} for prompt γ at $\sqrt{s_{NN}} = 200 \text{ GeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [JHEP 1305 (2013) 030]

• At $p_T < 4 \,\mathrm{GeV/c}$ contribution from thermal photons also