

From Quark to Jet: A Beautiful Journey Lecture 1

Beauty Physics, Tracking, and Distributed Computing

Tyler Dorland

Deutsches Elektronen-Synchrotron (DESY)

Theoretical

Quarks

Mathematical Objects: Matrices, operators, etc.

Theoretical

Quarks Mathematical Objects: Matrices, operators, etc.

Hadronization

Particles intermediate and quasifinal state objects

Theoretical

Quarks
Mathematical Objects:
Matrices, operators, etc.

Hadronization

Particles intermediate and quasifinal state objects

Reconstruction

Jets
Energy deposits in detector used to recreate particles

Theoretical

Hadronization

Reconstruction

Quarks Mathematical Objects: Matrices, operators, etc.

Particles
intermediate and quasifinal state objects

Jets
Energy deposits in detector used to recreate particles

Theoretical

Quarks

Mathematical Objects: Matrices, operators, etc.

Huge numbers of complex equations

Hadronization

Particles

intermediate and quasifinal state objects

Entirely Simulated, particles are subjected to decay conditions

Reconstruction

Jets

Energy deposits in detector used to recreate particles

Detector simulation, Algorithmic reconstruction

Theoretical

Hadronization

Reconstruction

Quarks
Mathematical Objects:

Particles

intermediate and quasi-

Energy deposits in detector

Jets

Different computing solutions used to tackle the unique challenges at each step

complex equations

particles are subjected to decay conditions

Algorithmic reconstruction

Theoretical

- Hadronization
- Reconstruction

Quarks Particles Jets

Mathematical Objects: intermediate and quasi- Fnerov deposits in detector

Different computing solutions used to tackle the unique challenges at each step

The firstlecture will explore a bit more theory, tracking and how to cope with the increased demands of new physics environements

Ask Questions here

- Use theory to make predictions for observables of particles
- Design detectors to detect these observables
- Algorithms to remake the objects

Beauty Physics - Theory

- Beauty quark discovered in 1977 at Fermilab
- Lighter than top quark and W/Z/H bosons
 - Significant decay channel
- Beauty (and charm) quarks have a lifetime that allows for decay lengths of a few millimeters
 - Top is too short, up/down/charm is too long

Beauty Physics - Theory

- b-jets are extremely powerful background reducers
 - Many important signals have b-quarks

 Huge order of magnitude reduction from identifying b-quarks

Very important tool

Hadronization

- Most calculations are confined to simple elements
- What we actually measure is much more complicated

Hardonization

- We know that as quarks get further away from each other they make pairs with other quarks
 - These are called hadrons
- Hadronization depends on many experimentally adjusted factors
- Most importantly we can begin to look at event topology

Beauty Physics - Particle Level

- If a b-quark is paired with an s-quark the resulting meson, B_s, has a long lifetime, and some very interesting decay signatures
- We use these particular decay signatures to determine what experimental signature we want to see

Experimental signature

- Now we have a distinct signature to search for
 - A secondary vertex
 - Jet
 - Displaced track
 - Lepton
- Rare, but not unique
 - We will use different techniques to classify
 - Essentially a probability the jet came from a bquark

Beauty Physics - Detector Level

Theory Questions

- Use theory to make predictions for observables of particles
- Design detectors to detect these observables
- Reconstruction algorithms to remake the objects

Tracking - an Introduction

Fitting

- An nth degree polynomial will exactly fit (n+1) points
- Therefore, any three points can be fit with a circle
- Fits generally classified by distances of points to fitted curve (chi-squared)
- For nth degree polynomial, n+2 ... n+m points are degrees of freedom

Polynomial fits to a sine curve

 Inside of the collision region we will have many hits we can associate with a primary vertex

 Choose an initial set of layers that we name the "seeding layers" that provide an initial estimate of track parameter

- Choose an initial set of layers that we name the "seeding layers" that provide an initial estimate of track parameter
- Then collect all possible hits associated with different seeds

- Choose an initial set of layers that we name the "seeding layers" that provide an initial estimate of track parameter
- Then collect all possible hits associated with different seeds
- Using techniques to estimate the goodness of the fit we can then estimate the final track parameters

Fake Removal

- Choose an initial set of layers that we name the "seeding layers" that provide an initial estimate of track parameter
- Then collect all possible hits associated with different seeds
- Using techniques to estimate the goodness of the fit we can then estimate the final track parameters
- And remove hits not associated with good tracks

Iterative Tracking

 With iterative tracking certain quality tracks can be chosen and then removed from further inspection

Iterative Tracking

- With iterative tracking certain quality tracks can be chosen and then removed from further inspection
- Then use the remaining hits to create the remaining tracks
- After many iterations we end with the final set of tracks

Real data examples

Tracking as a primary time user

Time Spent on which part of reconstruction Top-quark pair production events

Looking Towards 2015

With no changes, the computing power needed could be 6 times what is currently used

Current algorithms were developed considering the run conditions for 2011-2012 where there was an average of 20 interactions per bunch crossing

For 2015, there could be over 40 interactions on average

Tracking

- Charged particles make curves in magnetic fields
- Basic algorithms can be used to find tracks
- Tracking one of the largest time consumers and sensitive to pileup

Problems with pile up

 Higher and higher luminosity means we have longer event reconstruction times

 New event architecture might be able to help

CMS Computing Network

CMS Current Event Model

- Global configurations are loaded into memory
 - Then configurations specific to the specific time of running
- Events then processed serially
- The most time intensive part of event reprocessing is tracking

Amdahl's Law

 Amdahl's Law is the upper limit on the speedup gained by a number of processors

$$S(N) = \frac{1}{(1-P) + \frac{P}{N}}$$

CMS Threaded Design

- Events are not seen globally
- Multiple events are run concurrently
 - Less backup from very complicated events
- Streams still process serially

Current event Processing

Threading inside of a module

Performance Results

- Single threaded runs out of memory at 3000 simultaneous events
- Definite improvement through multithreading

Conclusions

- Beauty physics is a very diverse and large part of high energy physics
- B-Hadrons have distinguishing traits we can use to make bjets very power tools for background reduction
- To make use of this, we must use information from many parts of the detector which all require their own reconstruction algorithms and different levels of computing resources
- By restructuring the event processing structure to accommodate threaded applications we can meet the demands required for tracking in the future

Speedup from

