
LAN Programming – The Basics

1
iCSC2014, Jonas Kunze, University of Mainz – NA62

Network Programming

Lecture 1

LAN Programming – The Basics

Jonas Kunze

University of Mainz – NA62

Inverted CERN School of Computing, 24-25 February 2014

LAN Programming – The Basics

2
iCSC2014, Jonas Kunze, University of Mainz – NA62

Outline

 Recap of the TCP/IP model

 ISO/OSI and TCP/IP

 User Datagram Protocol (UDP)

 Transmission Control Protocol (TCP)

 Network programming with BSD Sockets

 Code snippets

 Performance

 Alternatives to BSD Sockets

 Network Protocols in User Space

LAN Programming – The Basics

3
iCSC2014, Jonas Kunze, University of Mainz – NA62

The ISO/OSI reference model

 Communications protocols are divided into independent
layers

 Every layer offers a service to the overlying layer

Broker 1
speaks japanese

Interpreter
speaks japanese

and english

Technician
recognizes letters

and morses them

Broker 2
speaks french

Interpreter
speaks french

and english

Technician
receives letters and

writes sentences

Ideas about bitcoins

Translated sentences

without knowledge of bitcoins

Non-inter preted characters

in the correct order

I

S

O

I

S

O

LAN Programming – The Basics

4
iCSC2014, Jonas Kunze, University of Mainz – NA62

Interplay between OSI layers

 Every layer encapsulates the message into a Protocol Data
Unit (PDU)

 PDUs typically consist of a Header and a Data section

 Communication partners exchange PDUs by using the next
lower layer

 Receiver unpacks PDUs in reverse order (like a stack)

n-PDU

(n+1)-PDU

H H Data
H Data

H Data

H DataLayer 3

Layer 2

Layer 1

LAN Programming – The Basics

5
iCSC2014, Jonas Kunze, University of Mainz – NA62

The TCP/IP model

 The ISO/OSI model is just a theoretical model with almost no
implementation

 The most common communications protocols are part of the
Internet Protocol Suite (TCP/IP model)

 Some ISO/OSI layers are merged

 No strict separation between layers

LAN Programming – The Basics

6
iCSC2014, Jonas Kunze, University of Mainz – NA62

User Datagram Protocol (UDP)

 UDP is connectionless and unreliable like IP

 Source-Port: The port of the process sending the datagram

 Destination-Port: The port number the datagram should be forwarded
to

 Length: The length of the whole PDU in Bytes (8 < length < 65535)

 Checksum: Calculated with the whole PDU and data from the IP
header

LAN Programming – The Basics

7
iCSC2014, Jonas Kunze, University of Mainz – NA62

Transmission Control Protocol (TCP)

 Much more powerful and complex communication service
than UDP

 Important application layer protocols based on TCP

 World Wide Web (HTTP)

 Email (SMTP)

LAN Programming – The Basics

8
iCSC2014, Jonas Kunze, University of Mainz – NA62

Transmission Control Protocol (TCP)

 TCP is reliable:

 Error-free: fragments are retransmitted in case they did not
arrive at the destination (timeout)

 Preserving order without duplicates

 TCP is connection oriented

 Connection establishment necessary before data can be sent

 Connection defined by IP and port number (like UDP) of
source and destination

 Connections are always point-to-point and full-duplex

 It implements flow control and congestion avoidance

 Data is transmitted as an unstructured byte stream

LAN Programming – The Basics

9
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP data flow

 A sends frame with SYN and random
Sequence number X

 B acknowledges with ACK=X+1 and
random Sequence number Y

 A acknowledges the reception

 A sends Z bytes

 B increases the sequence by Z to
acknowledge the data reception

 Disconnection works like connection
establishment but with FIN instead of
SYN

LAN Programming – The Basics

10
iCSC2014, Jonas Kunze, University of Mainz – NA62

Flow Control and Congestion Avoidance

 Frames are only rarely dropped because of transmission
errors (e.g. bit flip)

 Connections are typically either working without transmission
errors or not at all

 Main reason for dropped frames are overloads of the receiver or
the network

TCP implements two mechanisms to avoid overloading:

 Flow control: Avoids overloading of the receiver

 Congestion avoidance: Reduces the sending rate in case that
fragments are dropped by the network

LAN Programming – The Basics

11
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP's Flow Control: Sliding Window

 Each node has a receiving and sending buffer

 In each segment a node specifies how many bytes it can receive

 Receiver window size: Number of free bytes in the receiving buffer

 If a node has sent as many unacknowledged bytes as the window
size is large it will stop sending and wait for the next acknowledgment

 With each acknowledgment the window slides to the right

LAN Programming – The Basics

12
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP's Congestion Avoidance

 Congestion window: Specifies the maximum number of bytes
that may be sent without acknowledgment depending on the
network capacity

 Max bytes that may be sent = min(sliding win, congestion win)

The congestion avoidance algorithm:

 Initialize the congestion window to typically 2 x MSS (slow start)

 Send until one of the two windows are filled

 If a segment is acknowledged: Increase the congestion window
 Doubled until threshold reached, then linearly

 If acknowledgment timed out (frame dropped by network):
 Set threshold to half the current congestion window and go back to slow

start

LAN Programming – The Basics

13
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP's Congestion Avoidance

LAN Programming – The Basics

14
iCSC2014, Jonas Kunze, University of Mainz – NA62

Sending Buffer

 When an application sends data chunks to the TCP stack two
different approaches can be applied:

1. Low latency
 Data chunks sent directly as they are

 Disadvantage: Many small IP packets will be transmitted (low efficiency)

2. High throughput
 Buffer data and send larger segments

 Higher latency but more efficient

LAN Programming – The Basics

15
iCSC2014, Jonas Kunze, University of Mainz – NA62

Nagle’s Algorithm

 An algorithm to reach the high throughput approach:

 Send first chunk of data arriving at the TCP stack directly

 Fill sending buffer with new incoming data without sending

 If the buffer reaches the MSS : Send a new frame clearing the
buffer

 If all sent segments are acknowledged: Send a new frame
clearing the buffer

 Nagle’s algorithm is used in almost all TCP implementations

 Can be deactivated to reduce latency (e.g. for X11 applications)

LAN Programming – The Basics

16
iCSC2014, Jonas Kunze, University of Mainz – NA62

Switch off Nagle's Algorithm

 This is only rarely necessary!

 Within your program:

 System wide:

int flag = 0;

setsockopt(socket, /* socket affected */

 IPPROTO_TCP, /* set option at TCP level */

 TCP_NODELAY, /* name of option */

 (char) &flag, /* the actual value */

 sizeof(int)); /* length of option value */

echo 1 > /proc/sys/net/ipv4/tcp_low_latency

LAN Programming – The Basics

17
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP vs UDP

 TCP: A lot of bookkeeping and additional data transmission
for acknowledgments

 UDP: Just sends the data as it is

But...

 TCP: Flow control, congestion avoidance, Nagle's algorithm

Typical rule of thumb:

 TCP for high throughput, reliability and/or congestion
avoidance

 UDP for low latency and broadcasts/multicasts (not possible
with TCP)

LAN Programming – The Basics

18
iCSC2014, Jonas Kunze, University of Mainz – NA62

A Quick RTT Test

This test was

performed with

hpcbench:

hpcbench.sourcefor

ge.net

40

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400 1600

L
at

en
cy

[µ
s]

Chunk size [B]

UDP vs T CP round trip times

UDP
T CP

T CP nodelay

LAN Programming – The Basics

19
iCSC2014, Jonas Kunze, University of Mainz – NA62

Outline

 Recap of the TCP/IP model

 ISO/OSI and TCP/IP

 User Datagram Protocol (UDP)

 Transmission Control Protocol (TCP)

 Network programming with BSD Sockets

 Code snippets

 Performance
 Interrupt Coalescing

 NAPI

 Alternatives to BSD Sockets

 Network Protocols in User Space

LAN Programming – The Basics

20
iCSC2014, Jonas Kunze, University of Mainz – NA62

BSD Sockets

 Linux supports TCP/IP as its native network transport

 BSD Sockets is a library with an interface to implement
network communications using any TCP/IP layer below the
application layer

 Important functions

 socket() opens a new socket

 bind() assigns socket to an address

 listen() prepares socket for incoming connections

 accept() creates new socket for incoming connection

 connect() connects to a remote socket

 send() / write() sends data

 recv() / read() receives data

LAN Programming – The Basics

21
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP Code Snippet

Simple TCP socket accepting connections and receiving data:

Network libraries from the second lecture are based on similar code

Complete examples to be found at: http://github.com/JonasKunze

socket = socket(AF_INET, SOCK_STREAM, 0);

serv_addr.sin_family = AF_INET;

serv_addr.sin_port = htons(8080);

serv_addr.sin_addr.s_addr = INADDR_ANY;

bind(socket, (struct sockaddr *) &serv_addr, sizeof(serv_addr));

listen(socket, 5);

connectionSocket = accept(socket, (struct sockaddr *) &cli_addr, &clilen);

recv(connectionSocket, buffer, sizeof(buffer), 0);

LAN Programming – The Basics

22
iCSC2014, Jonas Kunze, University of Mainz – NA62

TCP vs UDP: Throughput

Single threaded blocking sender and receiver, reliable network

●Small frames induce high

 CPU load → packet loss

●TCP achieves higher

 throughput

UDP receive rate
UDP send rate

TCP receive rate

100 1 k 10 k
chunk size [B]

100 1 k 10 k
chunk size [B]

C
P

U
 l
o
a
d
 [

%
] 140

120

100

80

60

40

20

0

D
a
ta

ra
te

 [
G

b
p
s
]

12

10

8

6

4

2

0

UDP CPU load
UDP packet loss

TCP CPU load

LAN Programming – The Basics

23
iCSC2014, Jonas Kunze, University of Mainz – NA62

Down to the Kernel

 When data arrives at the NIC:

 Data copied to kernel space
(DMA)

 NIC sends interrupt

 Kernel copies data to the
corresponding user space buffer
(socket)

 Kernel informs user space
application

LAN Programming – The Basics

24
iCSC2014, Jonas Kunze, University of Mainz – NA62

Interrupt Coalescing

 Technique to reduce interrupt load

 Interrupts are held back until...

 … a certain number of frames have been received...

 … or a timer times out

 Now the kernel can process several frames at once

 Higher efficiency with just little increase of latency

 # print current settings

ethtool -c eth0

change settings

ethtool -C eth0 rx-usecs 0 # 0 is adaptive mode for many drivers

ethtool -C eth0 rx-frames 12

LAN Programming – The Basics

25
iCSC2014, Jonas Kunze, University of Mainz – NA62

Interrupt Coalescing

 Small values overload the CPU → Packet loss

 High values lead to buffer overflow → Packet loss

First bin shows adaptive mode

LAN Programming – The Basics

26
iCSC2014, Jonas Kunze, University of Mainz – NA62

NAPI

 An alternative to interrupts is polling:

 Kernel periodically checks for new data in the NIC buffer
 High polling frequencies induce high memory loads

 Low polling frequencies lead to high latencies and packet loss

 NAPI: Linux uses both

 Interrupts per default

 Polling in case of high data rates incoming

The kernel still needs to copy incoming data!

LAN Programming – The Basics

27
iCSC2014, Jonas Kunze, University of Mainz – NA62

Outline

 Recap of the TCP/IP model

 ISO/OSI and TCP/IP

 User Datagram Protocol (UDP)

 Transmission Control Protocol (TCP)

 Network programming with BSD Sockets

 Code snippets

 Performance

 Alternatives to BSD Sockets

 Network Protocols in User Space
 Example: pf_ring DNA

 Reliability on top of UDP?

 Reliability without acknowledgment

LAN Programming – The Basics

28
iCSC2014, Jonas Kunze, University of Mainz – NA62

Network Protocols in User Space

 Following approach can be implemented
in the user space to avoid double copies

 NIC copies incoming data to a user space
buffer (DMA)

 The user space application polls the
buffer

 The user space application may enable
interrupts for low data rates

 The kernel is only used for the
initialization

 0% CPU used for accessing the data

LAN Programming – The Basics

29
iCSC2014, Jonas Kunze, University of Mainz – NA62

Example: pf_ring DNA

 Proprietary user space driver by ntop

 Does not implement any protocol

 You need to implement them: ETH, IP, UDP, TCP, ARP, IGMP...

 Compatible with all 1 GbE and 10 GbE NICs running on PCI-E

 Full line rate (1-10 GbE) with any frame size

 Round trip time below 5 µs

 Hardware filtering (only Intel and Silicom NICs)

 Very efficient Intrusion prevention systems possible (Snort)

 Other userspace drivers: Netmap, Intel DPDK, OpenOnload

LAN Programming – The Basics

30
iCSC2014, Jonas Kunze, University of Mainz – NA62

Reliability on top of UDP?

 At CERN experiments most data senders are FPGAs

 Very fast in parallel jobs

 Typically fully loaded by algorithms
 Sometimes there's no space left for a fully implemented TCP/IP stack

 I've seen many groups implementing reliable protocols on top
of IP

 In most cases the result was TCP without flow and congestion
control

 Being compatible with TCP/UDP relieves the software
developers

 You don't need to implement the protocol on the receiver side

 Instead you can use standard libraries

LAN Programming – The Basics

31
iCSC2014, Jonas Kunze, University of Mainz – NA62

Reliability without acknowledgment

 Sometimes it's not even possible to store data until the
acknowledgment is received

 You should use pure UDP in this case

 As soon as datagrams are sent out you have to trust the
network

 Make sure that you don't overload switches/routers/receiver
nodes

 Check every node whether frames are dropped

Switch/Router:

show interfaces ...
Linux:

cat /proc/net/udp

LAN Programming – The Basics

32
iCSC2014, Jonas Kunze, University of Mainz – NA62

Summary

 TCP is more than just reliable

 It implements a maximum efficient data transmission

 BSD sockets provide a nice API for simple network
programming

 For more complex architectures networking libraries are
recommended

 Linux' network sockets are not as efficient as they could be

 High performance network drivers provide efficient alternatives
to BSD sockets but they generate additional work for the
developer team

