

Introduction to machine learning

Juan López González
University of Oviedo

Inverted CERN School of Computing, 24-25 February 2014

General overview

Lecture 1

- Machine learning
 - Introduction
 - Definition
 - Problems
 - Techniques

Lecture 2

- ANN
- SOMs
 - Definition
 - Algorithm
- Simulation
- SOM based models

LECTURE 1

Introduction to machine learning and data mining

1. Introduction

- 1.1. Some definitions
- 1.2. Machine learning vs Data mining
- 1.3. Examples
- 1.4. Essence of machine learning
- 1.5. A learning puzzle

1.1 Some definitions

- To learn
 - To use a set of observations to uncover an underlying process
- To memorize
 - To commit to memory
 - It doesn't mean to understand

1.2 Machine learning vs Data mining

- Machine learning (Arthur Samuel)
 - Study, design and development of algorithms that give computers capability to learn without being explicitly programmed.

- Data mining
 - Extract knowledge or unknown patterns from data.

1.3 Examples

- Credit approval
 - Gender, age, salary, years in job, current debt...
- Spam filtering
 - Subject, From...
- Topic spotting
 - Categorize articles
- Weather prediction
 - Wind, humidity, temperature...

1.4 Essence of machine learning

- A pattern exists
- We cannot pin it down mathematically
- We have data on it

1.5 A learning puzzle

2. Definition

- 2.1. Components
- 2.2. Generalization and representation
- 2.3. Types of learning

2.1 Components

- Input (customer application)
- Ouput (aprove/reject credit)
- Ideal function (f: X → Y)
 - Data: (a₁,b₁,...,n₁), (a₂,b₂,...,n₂) ... (a_N,b_N,...,n_N) (historical records)
 - Result: (y_1) , (y_2) ... (y_N) (loan paid or not paid)
- Hypothesis (g: X → Y)

2.1 Components

Unknown target function f: X → Y

Training examples

 $(a_1,b_1,...,n_1)...(a_N,b_N,...,n_N)$

Learning algorithm

Hypothesis set

Н

Final hypothesis g ≈ f

2.2 Generalization and representation

Generalization

- The algorithm has to build a general model
- Objective
 - Generalize from experience
 - Ability to perform accurately for unseen examples

Representation

- Results depend on input
 - Input depends on representation
 - Pre-processing?

2.3 Types of learning

- Supervised
 - Input and output
- Unsupervised
 - Only input
- Reinforcement
 - Input, output and grade of output

3. Problems

- 3.1. Regression
- 3.2. Classification
- 3.3. Clustering
- 3.4. Association rules

3.1 Regression

- Statistical process for estimating the relationships among variables
 - Could be used for prediction

3.2 Classification

- Identify to which of a set of categories a new observation belongs
 - Supervised learning

3.3 Clustering

- Grouping a set of objects in such a way that objects in the same group are more similar
 - Unsupervised learning

3.4 Association rule

Discovering relations between variables in large databases

- Based on 'strong rules'
- If order matters -> Sequential pattern mining

	Α	В	С	
1	0	0	1	
2	1	0	1	
3	1	1	0	
4	1	0	0	
5	0	1	0	

frequent itemset lattice

4. Techniques

- 4.1. Decision trees
- 4.2. SVM
- 4.3. Monte Carlo
- 4.4. K-NN
- 4.5. ANN

4.1 Decision trees

Uses tree-like graph of decisions and possible consequences

hair in [yes] Internal node: attribute Leaf: result feathers in [no] legs < 5.0Yes Νo tail in [no] Leaf - insect Leaf - bird Leaf - mammal Νo legs < 5.5 legs < 2.0 Yes legs < 6.0 legs < 7.0legs < 2.0domestic in [no] Yes Leaf - shellfish Leaf - reptile Leaf - fish Leaf - fish Leaf - shellfish legs < 4.5 Leaf - shellfish Leaf - insect Yes Leaf - shellfish Leaf - frog

4.1 Decision trees

- Results human readable
- Easily combined with other techniques
 - Possible scenarios can be added
- Expensive

- Ex: C4.5
 - Information entropy

4.2 Support Vector Machine (SVM)

- Separates the graphical representation of the input points
 - Constructs a hyperplane which can be used for classification
 - Input space transformation helps
 - Non-human readable results

4.3 Monte Carlo

Obtain the distribution of an unknown probabilistic entity

Random sampling to obtain numerical results

Applications

- Physics
- Microelectronics
- Geostatistics
- Computational biology
- Computer graphics
- Games
- ...

Monte Carlo Simulation: pi=3.28

4.4 K-Nearest neighbors (K-NN)

 Classifies by getting the class of the K closest training examples in the feature space

4.4 K-Nearest neighbors (K-NN)

- Easy to implement
 - naive version
- High dimensional data needs dimension reduction
- Large datasets make it computational expensive
- Many k-NN algorithms try to reduce the number of distance evaluations performed

Systems of interconnected neurons that compute from inputs

Human	Artificial	
Neuron	Processing element	
Dendrites	Combining function	
Cell body	Transfer function	
Axons	Element output	
Synapses	Weights	

Example:

Perceptron

- single-layer artificial network with one neuron
- calculates the linear combination of its inputs and passes it through a threshold activation function

$$y = \operatorname{sgn}\left(\sum_{i=1}^{2} w_i x_i + \theta\right)$$
$$\operatorname{sgn}(s) = \begin{cases} 1 & \text{if } s > 0\\ -1 & \text{otherwise.} \end{cases}$$

Equivalent to a linear discriminant

Perceptron

Linearly Separable

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

Not Linearly Separable

Equivalent to a linear discriminant

Learning

- Learn the weights (and threshold)
- Samples are presented
 - If output is incorrect adjust the weights and threshold towards desired output
 - If the output is correct, do nothing

Q & A