
Is your web API truly RESTful (and does it matter)?

1
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful
(and does it matter)?

Josef Hammer

CERN

Inverted CERN School of Computing, 24-25 February 2014

Is your web API truly RESTful (and does it matter)?

2
iCSC2014, Josef Hammer, CERN

The Programmable Web

 The “human web” is a great success story

 Highly scalable

 Easy to change

 With only the knowledge of a base URL (e.g. www.cern.ch)
you can explore and interact with any web site

 But APIs for machines are more difficult

 Hard to discover / explore: Machines do not understand the
meaning of names

 Most APIs are difficult to change once deployed

 RESTful architectures provide a solution

Is your web API truly RESTful (and does it matter)?

3
iCSC2014, Josef Hammer, CERN

Outline

 History

 Introduction to REST

 RESTful API Design

 URIs

 HTTP

 Hypermedia

 Conclusion

Is your web API truly RESTful (and does it matter)?

4
iCSC2014, Josef Hammer, CERN

Where do we come from?

 COM

 Component Object Model

 CORBA

 Common Object Request Broker Architecture

 XML-RPC

 Extensible Markup Language Remote Procedure Call

 SOAP

 Simple Object Access Protocol

 WSDL (Web Services Description Language)

 Big “service document” tight coupling, hard to change

Is your web API truly RESTful (and does it matter)?

5
iCSC2014, Josef Hammer, CERN

Representational State Transfer
(REST)

 Term defined in Roy Fielding's dissertation in 2000 [fielding]

 A technical description of how the World Wide Web works

 Architectural style, not a protocol like SOAP

 6 architectural constraints (“Fielding constraints”)

 Resources + representations

 “The server sends a representation describing the state of a
resource. The client sends a representation describing the state
it would like the resource to have. That’s representational state
transfer.” [rwa]

 Not limited to HTTP

Is your web API truly RESTful (and does it matter)?

6
iCSC2014, Josef Hammer, CERN

Fielding Constraints (1) [fielding, rwa]

 Client-server

 All communication on the web is one-to-one
(vs. peer-to-peer w/ multiple sources)

 Stateless

 When a client is not currently making a request, the server
doesn’t know it exists.

 Cacheable

 A client can save trips over the network by reusing previous
responses from a cache.

Is your web API truly RESTful (and does it matter)?

7
iCSC2014, Josef Hammer, CERN

Fielding Constraints (2) [fielding, rwa]

 Layered system

 Intermediaries such as proxies can be invisibly inserted
between client and server.

 Code on demand (optional)

 The server can send executable code in addition to data.
This code is automatically deployed when the client requests
it, and will be automatically redeployed if it changes.

 E.g. Javascript code in the browser

Is your web API truly RESTful (and does it matter)?

8
iCSC2014, Josef Hammer, CERN

Fielding Constraints (3) [fielding, rwa]

 The uniform interface

 Identification of resources
 Each resource is identified by a stable URI.

 Manipulation of resources through representations
 The server describes resource state by sending representations to

the client. The client manipulates resource state by sending
representations to the server.

 Self-descriptive messages
 All the information necessary to understand a request or response

message is contained in (or at least linked to from) the message
itself.

 The hypermedia constraint (“HATEOAS”)
 The server manipulates the client’s state by sending a hypermedia

“menu” containing options from which the client is free to choose.

Is your web API truly RESTful (and does it matter)?

9
iCSC2014, Josef Hammer, CERN

HATEOAS (1)

 Hypermedia As The Engine Of Application State

 “Hypermedia”: Links, basically

 “Clients make state transitions only through actions that are
dynamically identified within hypermedia by the server (e.g., by
hyperlinks within hypertext). Except for simple fixed entry points
to the application, a client does not assume that any particular
action is available for any particular resources beyond those
described in representations previously received from the
server.” [wiki-rest]

Is your web API truly RESTful (and does it matter)?

10
iCSC2014, Josef Hammer, CERN

HATEOAS (2)

 “A distributed application makes forward progress by
transitioning from one state to another, just like a state machine.
The difference from traditional state machines, however, is that
the possible states and the transitions between them are not
known in advance. Instead, as the application reaches a new
state, the next possible transitions are discovered.“ [rip]

 Clients only need to know the entry point (base URI)

 Clients shall not be required to construct URIs

 Loose coupling easy to maintain

Is your web API truly RESTful (and does it matter)?

11
iCSC2014, Josef Hammer, CERN

HATEOAS (3)

[rip]

Is your web API truly RESTful (and does it matter)?

12
iCSC2014, Josef Hammer, CERN

[rip]

REST Maturity Model (RMM) (1)

 by Leonard Richardson [rip; fowler-rmm]

 a.k.a. Richardson Maturity Model

 how “RESTful” is a web API?

Is your web API truly RESTful (and does it matter)?

13
iCSC2014, Josef Hammer, CERN

[rip]

REST Maturity Model (RMM) (2)

Level 3: Hypermedia controls

 Level 2 + uses hypermedia for navigation

Level 2: HTTP methods

 multiple URIs, multiple HTTP methods

 PUT|DELETE /slides/1

Level 1: URIs (‘Resources’)

 multiple URIs, single HTTP method

 POST /slides/1

Level 0: XML-RPC, SOAP, ...

 single URI, single HTTP method

 POST /slides

Is your web API truly RESTful (and does it matter)?

14
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

15
iCSC2014, Josef Hammer, CERN

URI vs URL vs URN

 URI: Uniform Resource Identifier

 A short string to identify a resource

 Might have no representation

 URL: Uniform Resource Locator

 A URI that can be dereferenced (= has a representation)

 E.g. http://www.cern.ch

 URN: Uniform Resource Name

 no protocol to dereference

 E.g. urn:isbn:9781449358063

[uri]

Is your web API truly RESTful (and does it matter)?

16
iCSC2014, Josef Hammer, CERN

URI Design

 “The only thing you can use an identifier for is to refer to an object.
When you are not dereferencing, you should not look at the
contents of the URI string to gain other information.”
[Tim Berners-Lee, w3-axioms]

 Client code’s view: http://cern.ch/8812ca6fa190e57b0730ea

 “That said, REST API designers should create URIs that convey
a REST API’s resource model to its potential client
developers.” [rad]

 Client developer’s view: http://cern.ch/events/2014/02/24/iCSC

 “A REST API’s clients must consider URIs to be the only
meaningful resource identifiers. Although other backend system
identifiers (such as database IDs) may appear in a URI’s path, they
are meaningless to client code.” [rad]

Is your web API truly RESTful (and does it matter)?

17
iCSC2014, Josef Hammer, CERN

Resource Archetypes [rad]

 4 basic types (+ naming rules)

 Document
 Single item (noun, sg – e.g. /outline)

 Collection
 Collection of items; server decides on URI (noun, pl – e.g. /slides)

 Store

– Special kind of collection: item URIs are user-defined

 Controller
 Transactions etc. (verb – e.g. /move)

 Try to avoid

Is your web API truly RESTful (and does it matter)?

18
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

19
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (1)

 The HTTP standard (RFC 2616) defines 8 methods a client can
apply to a resource

 GET

 Get a representation of this resource

 Safe + idempotent: no side effects / state changes allowed!

 Caching allowed

 DELETE

 Destroy this resource

 Idempotent (i.e. repeating the request leads to the same result /
state)

Is your web API truly RESTful (and does it matter)?

20
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (2)

 PUT

 Replace the state of (or create!) this resource with the given
representation

 Idempotent

 POST

 POST-to-append: Create a new resource underneath this one,
based on the given representation

 Overloaded POST: Trigger any state transition. Run queries with
large inputs. Do anything.

 Neither safe nor idempotent (the most generic method)

Is your web API truly RESTful (and does it matter)?

21
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (3)

 HEAD

 Get the headers that would be sent along with a representation
of this resource, but not the representation itself. Safe!

 OPTIONS

 Discover which HTTP methods this resource responds to

 CONNECT, TRACE

 Used only with HTTP proxies

Is your web API truly RESTful (and does it matter)?

22
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (4)

 PATCH

 Extension defined in RFC 5789

 Modify part of the state of this resource

 LINK (draft)

 Connect some other resource to this one

 UNLINK (draft)

 Destroy the connection between some other resource and this
one

Is your web API truly RESTful (and does it matter)?

23
iCSC2014, Josef Hammer, CERN

CRUD

 Create, Read, Update, Delete

 everything you need for collections

 Maps perfectly well to HTTP verbs

 Create POST (collection), PUT (store)

 Read GET

 Update PUT

 Delete DELETE

 Rest Maturity Model Level 2

 does not fit everything (limited vocabulary)

 shared, tightly coupled understanding of resource life

Is your web API truly RESTful (and does it matter)?

24
iCSC2014, Josef Hammer, CERN

Requests: Good, Bad, or Evil? (1)

 GET /deleteUser?id=1234
Evil! GET must not modify the resource state!

 GET /deleteUser/1234
Certainly looks better ;) … nevertheless just as evil!

 DELETE /deleteUser/1234
Method name in URI … bad.

 POST /users/1234/delete
Why use a controller when there is a standard method? Bad.

 DELETE /users/1234

Is your web API truly RESTful (and does it matter)?

25
iCSC2014, Josef Hammer, CERN

Requests: Good, Bad, or Evil? (2)

 GET /users/register
Assuming “register” means creating a new user:
Might make sense for a human client (web site).
In an API: Bad. Retrieve a template with GET /users if necessary.

 POST /users/register
No need to use a controller for creating a resource … bad.

 POST /users

 PUT /users
If you really want to replace/update your entire user database ;)

 PUT /users/jhammer

Is your web API truly RESTful (and does it matter)?

26
iCSC2014, Josef Hammer, CERN

Content Negotiation (1)

 A single resource may have many representations

 Clients can request a specific one with the Accept* headers

 Media Type

 Accept: application/json

 Syntax: type "/" subtype *(";" parameter)

 Type::= application|audio|image|message|model|

 multipart|text|video

 Language

 Accept-Language: en, de; q=0.5, fr; q=0.1

Is your web API truly RESTful (and does it matter)?

27
iCSC2014, Josef Hammer, CERN

Content Negotiation (2)

HTTP/1.1 200 OK

Content-Type: text/html

<!DOCTYPE html …

GET /books/27 HTTP/1.1

Accept: text/html

HTTP/1.1 200 OK

Content-Type: application/json

{“title”: “…

GET /books/27 HTTP/1.1

Accept: application/json

Is your web API truly RESTful (and does it matter)?

28
iCSC2014, Josef Hammer, CERN

Conditional Requests (1)

 Server sends ETag header (“entity tag”; MD5 or Seq# or …)

 ETag: “a23-45-67c”

 Client uses this value to send a conditional request

 GET only if modified:
 If-None-Match: “a23-45-67c”

 Result: 304 (Not Modified)

 PUT only if NOT modified (since last GET):
 If-Match: “a23-45-67c”

 Result: 412 (Precondition Failed)

 Less reliable: Last-Modified (timestamp; 1s resolution)

 Client: If-Modified-Since, If-Unmodified-Since

Is your web API truly RESTful (and does it matter)?

29
iCSC2014, Josef Hammer, CERN

Conditional Requests (2)

HTTP/1.1 200 OK

ETag: “a23-45-67c”

{…, “price”: 30, …}

GET /books/27 HTTP/1.1

HTTP/1.1 412 Precondition Failed

PUT /books/27 HTTP/1.1

If-Match: “a23-45-67c”

{…, “price”: 29, …}

/books/27

is modified

by another client

Is your web API truly RESTful (and does it matter)?

30
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

31
iCSC2014, Josef Hammer, CERN

Hypermedia

 “Hypermedia is the general term for things like HTML links and
forms: the techniques a server uses to explain to a client what it
can do next.” [rwa]

 E.g. the <a> tag is a simple hypermedia control

 Works well for human clients

 We simply follow links labelled “Add to Cart”, “Sign In”, …

 … but how can we tell machines the semantic meaning of
these links?

Is your web API truly RESTful (and does it matter)?

32
iCSC2014, Josef Hammer, CERN

Link Relations (1)

 Links in many data formats allow the rel attribute

 Relation between the linked resource and the current one

 E.g. in HTML
 <link rel="stylesheet" type="text/css" href="/style.css"/>

 Tells browsers to automatically retrieve /style.css and use
it to style the current page

 Communicate the “meaning” of a link to the client

 Clients can interpret the relation and choose the right link

Is your web API truly RESTful (and does it matter)?

33
iCSC2014, Josef Hammer, CERN

Link Relations (2)

HTTP/1.1 200 OK

Link: <http://…/story/27/part2>;rel="next"

<!DOCTYPE html …

GET /story/27 HTTP/1.1

GET /story/27/part2 HTTP/1.1

Is your web API truly RESTful (and does it matter)?

34
iCSC2014, Josef Hammer, CERN

Link Relations (3)

 Link relations mean nothing without a formal definition

 RFC 5988 defines 2 types

 Registered link relations
 E.g. IANA (Internet Assigned Numbers Authority) manages a registry

 E.g. self, next, previous

 Extension relations
 Like URLs – you are allowed to define anything within your domain

 E.g. http://josefhammer.com/toc

Is your web API truly RESTful (and does it matter)?

35
iCSC2014, Josef Hammer, CERN

Evolvable APIs (1)

 Decoupling the client from the server

 Use link relations instead of hard-coded / constructed links

 Choose from the set of provided links only

 … allows APIs to evolve

 URIs can be changed
 only the relation is hard-coded

 Features can be added
 old versions of the client will ignore unknown links

 Features can be removed
 clients gracefully ignore missing links

Is your web API truly RESTful (and does it matter)?

36
iCSC2014, Josef Hammer, CERN

Evolvable APIs (2)

HTTP/1.1 201 CREATED

Location: /bugs/42

{ “bugID”: 42,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/42” },

 { “rel” : “reject”,

 “href”: “/bugs/42/rejection” },

 { “rel” : “fix”,

 “href”: “/bugs/42/solution” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

37
iCSC2014, Josef Hammer, CERN

Evolvable APIs (3)

HTTP/1.1 201 CREATED

Location: /bugs/43

{ “bugID”: 43,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/43” },

 { “rel” : “comment”,

 “href”: “/bugs/43/comments” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

38
iCSC2014, Josef Hammer, CERN

Evolvable APIs (4)

HTTP/1.1 201 CREATED

Location: /bugs/44

{ “bugID”: 44,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/44” },

 { “rel” : “comment”,

 “href”: “/bugs/44/comments” },

 { “rel” : “attach”,

 “href”: “/bugs/44/attachments” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

39
iCSC2014, Josef Hammer, CERN

Domain specific data formats

 Try to exploit existing domain specific data formats

 Atom, AtomPub

 OData

 Collection+JSON

 OpenSearch

 …

 Microformats

 HTML Microdata

 Client tools may exist

 Developers more likely to be familiar with the terms

Is your web API truly RESTful (and does it matter)?

40
iCSC2014, Josef Hammer, CERN

Microformats

 E.g. the hcard microformat [hcard]

 <div class="vcard">

 Josef

 Hammer

</div>

 Well-defined and -understood terms

 Easy to embed in HTML

 microformats.org provides a collection of schemata

Is your web API truly RESTful (and does it matter)?

41
iCSC2014, Josef Hammer, CERN

Microdata

 A refinement of the microformat concept for HTML 5

 5 new attributes for any HTML tag

 itemscope Starts a new scope (boolean)

 itemprop Like class in HTML

 itemtype Where to find the type definition

 itemid Global identifier (valid URL)

 itemref List of itemIDs

 schema.org provides a collection of schemata

Is your web API truly RESTful (and does it matter)?

42
iCSC2014, Josef Hammer, CERN

Loose coupling – easier to change

Conclusion

GET | POST | PUT | DELETE | …

 GET /deleteUser/1234

 DELETE /users/1234

/slides/outline/move

Collection | Document | Controller

 Yes, it does matter strive for the highest level

Is your web API truly RESTful (and does it matter)?

43
iCSC2014, Josef Hammer, CERN

References

 fielding: Architectural Styles and the Design of Network-based Software Architectures. Roy Thomas Fielding;
Doctoral dissertation, University of California, Irvine, 2000;
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 fowler-rmm: http://martinfowler.com/articles/richardsonMaturityModel.html

 hcard: http://microformats.org/wiki/hcard

 rad: REST API Design Rulebook. Mark Masse; O'Reilly, October 2011

 rip: REST in Practice. Jim Webber, Savas Parastatidis, Ian Robinson; O'Reilly, September 2010

 rwa: RESTful Web APIs. Leonard Richardson, Mike Amundsen, Sam Ruby; O’Reilly, September 2013

 rwc: RESTful Web Services Cookbook. Subbu Allamaraju; O’Reilly, March 2010

 rws: RESTful Web Services. Leonard Richardson, Sam Ruby; O’Reilly, May 2007

 uri: http://en.wikipedia.org/wiki/File:URI_Euler_Diagram_no_lone_URIs.svg

 w3-axioms: http://www.w3.org/DesignIssues/Axioms.html

 waa: Designing Evolvable Web APIs with ASP.NET. Glenn Block, Pablo Cibraro, Pedro Felix, Howard
Dierking, Darrel Miller; O’Reilly, March 2014 (est.; early release March 2013)

 wiki-rest: http://en.wikipedia.org/wiki/Representational_state_transfer

