
Is your web API truly RESTful (and does it matter)?

1
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful
(and does it matter)?

Josef Hammer

CERN

Inverted CERN School of Computing, 24-25 February 2014

Is your web API truly RESTful (and does it matter)?

2
iCSC2014, Josef Hammer, CERN

The Programmable Web

 The “human web” is a great success story

 Highly scalable

 Easy to change

 With only the knowledge of a base URL (e.g. www.cern.ch)
you can explore and interact with any web site

 But APIs for machines are more difficult

 Hard to discover / explore: Machines do not understand the
meaning of names

 Most APIs are difficult to change once deployed

 RESTful architectures provide a solution

Is your web API truly RESTful (and does it matter)?

3
iCSC2014, Josef Hammer, CERN

Outline

 History

 Introduction to REST

 RESTful API Design

 URIs

 HTTP

 Hypermedia

 Conclusion

Is your web API truly RESTful (and does it matter)?

4
iCSC2014, Josef Hammer, CERN

Where do we come from?

 COM

 Component Object Model

 CORBA

 Common Object Request Broker Architecture

 XML-RPC

 Extensible Markup Language Remote Procedure Call

 SOAP

 Simple Object Access Protocol

 WSDL (Web Services Description Language)

 Big “service document”  tight coupling, hard to change

Is your web API truly RESTful (and does it matter)?

5
iCSC2014, Josef Hammer, CERN

Representational State Transfer
(REST)

 Term defined in Roy Fielding's dissertation in 2000 [fielding]

 A technical description of how the World Wide Web works

 Architectural style, not a protocol like SOAP

 6 architectural constraints (“Fielding constraints”)

 Resources + representations

 “The server sends a representation describing the state of a
resource. The client sends a representation describing the state
it would like the resource to have. That’s representational state
transfer.” [rwa]

 Not limited to HTTP

Is your web API truly RESTful (and does it matter)?

6
iCSC2014, Josef Hammer, CERN

Fielding Constraints (1) [fielding, rwa]

 Client-server

 All communication on the web is one-to-one
(vs. peer-to-peer w/ multiple sources)

 Stateless

 When a client is not currently making a request, the server
doesn’t know it exists.

 Cacheable

 A client can save trips over the network by reusing previous
responses from a cache.

Is your web API truly RESTful (and does it matter)?

7
iCSC2014, Josef Hammer, CERN

Fielding Constraints (2) [fielding, rwa]

 Layered system

 Intermediaries such as proxies can be invisibly inserted
between client and server.

 Code on demand (optional)

 The server can send executable code in addition to data.
This code is automatically deployed when the client requests
it, and will be automatically redeployed if it changes.

 E.g. Javascript code in the browser

Is your web API truly RESTful (and does it matter)?

8
iCSC2014, Josef Hammer, CERN

Fielding Constraints (3) [fielding, rwa]

 The uniform interface

 Identification of resources
 Each resource is identified by a stable URI.

 Manipulation of resources through representations
 The server describes resource state by sending representations to

the client. The client manipulates resource state by sending
representations to the server.

 Self-descriptive messages
 All the information necessary to understand a request or response

message is contained in (or at least linked to from) the message
itself.

 The hypermedia constraint (“HATEOAS”)
 The server manipulates the client’s state by sending a hypermedia

“menu” containing options from which the client is free to choose.

Is your web API truly RESTful (and does it matter)?

9
iCSC2014, Josef Hammer, CERN

HATEOAS (1)

 Hypermedia As The Engine Of Application State

 “Hypermedia”: Links, basically

 “Clients make state transitions only through actions that are
dynamically identified within hypermedia by the server (e.g., by
hyperlinks within hypertext). Except for simple fixed entry points
to the application, a client does not assume that any particular
action is available for any particular resources beyond those
described in representations previously received from the
server.” [wiki-rest]

Is your web API truly RESTful (and does it matter)?

10
iCSC2014, Josef Hammer, CERN

HATEOAS (2)

 “A distributed application makes forward progress by
transitioning from one state to another, just like a state machine.
The difference from traditional state machines, however, is that
the possible states and the transitions between them are not
known in advance. Instead, as the application reaches a new
state, the next possible transitions are discovered.“ [rip]

 Clients only need to know the entry point (base URI)

 Clients shall not be required to construct URIs

 Loose coupling  easy to maintain

Is your web API truly RESTful (and does it matter)?

11
iCSC2014, Josef Hammer, CERN

HATEOAS (3)

[rip]

Is your web API truly RESTful (and does it matter)?

12
iCSC2014, Josef Hammer, CERN

[rip]

REST Maturity Model (RMM) (1)

 by Leonard Richardson [rip; fowler-rmm]

 a.k.a. Richardson Maturity Model

 how “RESTful” is a web API?

Is your web API truly RESTful (and does it matter)?

13
iCSC2014, Josef Hammer, CERN

[rip]

REST Maturity Model (RMM) (2)

Level 3: Hypermedia controls

 Level 2 + uses hypermedia for navigation



Level 2: HTTP methods

 multiple URIs, multiple HTTP methods

 PUT|DELETE /slides/1

Level 1: URIs (‘Resources’)

 multiple URIs, single HTTP method

 POST /slides/1

Level 0: XML-RPC, SOAP, ...

 single URI, single HTTP method

 POST /slides

Is your web API truly RESTful (and does it matter)?

14
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

15
iCSC2014, Josef Hammer, CERN

URI vs URL vs URN

 URI: Uniform Resource Identifier

 A short string to identify a resource

 Might have no representation

 URL: Uniform Resource Locator

 A URI that can be dereferenced (= has a representation)

 E.g. http://www.cern.ch

 URN: Uniform Resource Name

 no protocol to dereference

 E.g. urn:isbn:9781449358063

[uri]

Is your web API truly RESTful (and does it matter)?

16
iCSC2014, Josef Hammer, CERN

URI Design

 “The only thing you can use an identifier for is to refer to an object.
When you are not dereferencing, you should not look at the
contents of the URI string to gain other information.”
[Tim Berners-Lee, w3-axioms]

 Client code’s view: http://cern.ch/8812ca6fa190e57b0730ea

 “That said, REST API designers should create URIs that convey
a REST API’s resource model to its potential client
developers.” [rad]

 Client developer’s view: http://cern.ch/events/2014/02/24/iCSC

 “A REST API’s clients must consider URIs to be the only
meaningful resource identifiers. Although other backend system
identifiers (such as database IDs) may appear in a URI’s path, they
are meaningless to client code.” [rad]

Is your web API truly RESTful (and does it matter)?

17
iCSC2014, Josef Hammer, CERN

Resource Archetypes [rad]

 4 basic types (+ naming rules)

 Document
 Single item (noun, sg – e.g. /outline)

 Collection
 Collection of items; server decides on URI (noun, pl – e.g. /slides)

 Store

– Special kind of collection: item URIs are user-defined

 Controller
 Transactions etc. (verb – e.g. /move)

 Try to avoid

Is your web API truly RESTful (and does it matter)?

18
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

19
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (1)

 The HTTP standard (RFC 2616) defines 8 methods a client can
apply to a resource

 GET

 Get a representation of this resource

 Safe + idempotent: no side effects / state changes allowed!

 Caching allowed

 DELETE

 Destroy this resource

 Idempotent (i.e. repeating the request leads to the same result /
state)

Is your web API truly RESTful (and does it matter)?

20
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (2)

 PUT

 Replace the state of (or create!) this resource with the given
representation

 Idempotent

 POST

 POST-to-append: Create a new resource underneath this one,
based on the given representation

 Overloaded POST: Trigger any state transition. Run queries with
large inputs. Do anything.

 Neither safe nor idempotent (the most generic method)

Is your web API truly RESTful (and does it matter)?

21
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (3)

 HEAD

 Get the headers that would be sent along with a representation
of this resource, but not the representation itself. Safe!

 OPTIONS

 Discover which HTTP methods this resource responds to

 CONNECT, TRACE

 Used only with HTTP proxies

Is your web API truly RESTful (and does it matter)?

22
iCSC2014, Josef Hammer, CERN

HTTP Methods („Verbs“) (4)

 PATCH

 Extension defined in RFC 5789

 Modify part of the state of this resource

 LINK (draft)

 Connect some other resource to this one

 UNLINK (draft)

 Destroy the connection between some other resource and this
one

Is your web API truly RESTful (and does it matter)?

23
iCSC2014, Josef Hammer, CERN

CRUD

 Create, Read, Update, Delete

 everything you need for collections 

 Maps perfectly well to HTTP verbs

 Create  POST (collection), PUT (store)

 Read  GET

 Update  PUT

 Delete  DELETE

 Rest Maturity Model Level 2

 does not fit everything (limited vocabulary)

 shared, tightly coupled understanding of resource life

Is your web API truly RESTful (and does it matter)?

24
iCSC2014, Josef Hammer, CERN

Requests: Good, Bad, or Evil? (1)

 GET /deleteUser?id=1234
Evil! GET must not modify the resource state!

 GET /deleteUser/1234
Certainly looks better ;) … nevertheless just as evil!

 DELETE /deleteUser/1234
Method name in URI … bad.

 POST /users/1234/delete
Why use a controller when there is a standard method? Bad.

 DELETE /users/1234


Is your web API truly RESTful (and does it matter)?

25
iCSC2014, Josef Hammer, CERN

Requests: Good, Bad, or Evil? (2)

 GET /users/register
Assuming “register” means creating a new user:
Might make sense for a human client (web site).
In an API: Bad. Retrieve a template with GET /users if necessary.

 POST /users/register
No need to use a controller for creating a resource … bad.

 POST /users


 PUT /users
If you really want to replace/update your entire user database ;)

 PUT /users/jhammer

Is your web API truly RESTful (and does it matter)?

26
iCSC2014, Josef Hammer, CERN

Content Negotiation (1)

 A single resource may have many representations

 Clients can request a specific one with the Accept* headers

 Media Type

 Accept: application/json

 Syntax: type "/" subtype *(";" parameter)

 Type::= application|audio|image|message|model|

 multipart|text|video

 Language

 Accept-Language: en, de; q=0.5, fr; q=0.1

Is your web API truly RESTful (and does it matter)?

27
iCSC2014, Josef Hammer, CERN

Content Negotiation (2)

HTTP/1.1 200 OK

Content-Type: text/html

<!DOCTYPE html …

GET /books/27 HTTP/1.1

Accept: text/html

HTTP/1.1 200 OK

Content-Type: application/json

{“title”: “…

GET /books/27 HTTP/1.1

Accept: application/json

Is your web API truly RESTful (and does it matter)?

28
iCSC2014, Josef Hammer, CERN

Conditional Requests (1)

 Server sends ETag header (“entity tag”; MD5 or Seq# or …)

 ETag: “a23-45-67c”

 Client uses this value to send a conditional request

 GET only if modified:
 If-None-Match: “a23-45-67c”

 Result: 304 (Not Modified)

 PUT only if NOT modified (since last GET):
 If-Match: “a23-45-67c”

 Result: 412 (Precondition Failed)

 Less reliable: Last-Modified (timestamp; 1s resolution)

 Client: If-Modified-Since, If-Unmodified-Since

Is your web API truly RESTful (and does it matter)?

29
iCSC2014, Josef Hammer, CERN

Conditional Requests (2)

HTTP/1.1 200 OK

ETag: “a23-45-67c”

{…, “price”: 30, …}

GET /books/27 HTTP/1.1

HTTP/1.1 412 Precondition Failed

PUT /books/27 HTTP/1.1

If-Match: “a23-45-67c”

{…, “price”: 29, …}

/books/27

is modified

by another client

Is your web API truly RESTful (and does it matter)?

30
iCSC2014, Josef Hammer, CERN

Is your web API truly RESTful (and does it matter)?

31
iCSC2014, Josef Hammer, CERN

Hypermedia

 “Hypermedia is the general term for things like HTML links and
forms: the techniques a server uses to explain to a client what it
can do next.” [rwa]

 E.g. the <a> tag is a simple hypermedia control

 Works well for human clients

 We simply follow links labelled “Add to Cart”, “Sign In”, …

 … but how can we tell machines the semantic meaning of
these links?

Is your web API truly RESTful (and does it matter)?

32
iCSC2014, Josef Hammer, CERN

Link Relations (1)

 Links in many data formats allow the rel attribute

 Relation between the linked resource and the current one

 E.g. in HTML
 <link rel="stylesheet" type="text/css" href="/style.css"/>

 Tells browsers to automatically retrieve /style.css and use
it to style the current page

 Communicate the “meaning” of a link to the client

 Clients can interpret the relation and choose the right link

Is your web API truly RESTful (and does it matter)?

33
iCSC2014, Josef Hammer, CERN

Link Relations (2)

HTTP/1.1 200 OK

Link: <http://…/story/27/part2>;rel="next"

<!DOCTYPE html …

GET /story/27 HTTP/1.1

GET /story/27/part2 HTTP/1.1

Is your web API truly RESTful (and does it matter)?

34
iCSC2014, Josef Hammer, CERN

Link Relations (3)

 Link relations mean nothing without a formal definition

 RFC 5988 defines 2 types

 Registered link relations
 E.g. IANA (Internet Assigned Numbers Authority) manages a registry

 E.g. self, next, previous

 Extension relations
 Like URLs – you are allowed to define anything within your domain

 E.g. http://josefhammer.com/toc

Is your web API truly RESTful (and does it matter)?

35
iCSC2014, Josef Hammer, CERN

Evolvable APIs (1)

 Decoupling the client from the server

 Use link relations instead of hard-coded / constructed links

 Choose from the set of provided links only

 … allows APIs to evolve

 URIs can be changed
 only the relation is hard-coded

 Features can be added
 old versions of the client will ignore unknown links

 Features can be removed
 clients gracefully ignore missing links

Is your web API truly RESTful (and does it matter)?

36
iCSC2014, Josef Hammer, CERN

Evolvable APIs (2)

HTTP/1.1 201 CREATED

Location: /bugs/42

{ “bugID”: 42,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/42” },

 { “rel” : “reject”,

 “href”: “/bugs/42/rejection” },

 { “rel” : “fix”,

 “href”: “/bugs/42/solution” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

37
iCSC2014, Josef Hammer, CERN

Evolvable APIs (3)

HTTP/1.1 201 CREATED

Location: /bugs/43

{ “bugID”: 43,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/43” },

 { “rel” : “comment”,

 “href”: “/bugs/43/comments” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

38
iCSC2014, Josef Hammer, CERN

Evolvable APIs (4)

HTTP/1.1 201 CREATED

Location: /bugs/44

{ “bugID”: 44,

 “links”: [

 { “rel” : “self”,

 “href”: “/bugs/44” },

 { “rel” : “comment”,

 “href”: “/bugs/44/comments” },

 { “rel” : “attach”,

 “href”: “/bugs/44/attachments” }

]

}

POST /bugs HTTP/1.1

{ “description”: “…” }

Is your web API truly RESTful (and does it matter)?

39
iCSC2014, Josef Hammer, CERN

Domain specific data formats

 Try to exploit existing domain specific data formats

 Atom, AtomPub

 OData

 Collection+JSON

 OpenSearch

 …

 Microformats

 HTML Microdata

 Client tools may exist

 Developers more likely to be familiar with the terms

Is your web API truly RESTful (and does it matter)?

40
iCSC2014, Josef Hammer, CERN

Microformats

 E.g. the hcard microformat [hcard]

 <div class="vcard">

 Josef

 Hammer

</div>

 Well-defined and -understood terms

 Easy to embed in HTML

 microformats.org provides a collection of schemata

Is your web API truly RESTful (and does it matter)?

41
iCSC2014, Josef Hammer, CERN

Microdata

 A refinement of the microformat concept for HTML 5

 5 new attributes for any HTML tag

 itemscope Starts a new scope (boolean)

 itemprop Like class in HTML

 itemtype Where to find the type definition

 itemid Global identifier (valid URL)

 itemref List of itemIDs

 schema.org provides a collection of schemata

Is your web API truly RESTful (and does it matter)?

42
iCSC2014, Josef Hammer, CERN

Loose coupling – easier to change

Conclusion

GET | POST | PUT | DELETE | …

 GET /deleteUser/1234

 DELETE /users/1234

/slides/outline/move

Collection | Document | Controller

 Yes, it does matter  strive for the highest level

Is your web API truly RESTful (and does it matter)?

43
iCSC2014, Josef Hammer, CERN

References

 fielding: Architectural Styles and the Design of Network-based Software Architectures. Roy Thomas Fielding;
Doctoral dissertation, University of California, Irvine, 2000;
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

 fowler-rmm: http://martinfowler.com/articles/richardsonMaturityModel.html

 hcard: http://microformats.org/wiki/hcard

 rad: REST API Design Rulebook. Mark Masse; O'Reilly, October 2011

 rip: REST in Practice. Jim Webber, Savas Parastatidis, Ian Robinson; O'Reilly, September 2010

 rwa: RESTful Web APIs. Leonard Richardson, Mike Amundsen, Sam Ruby; O’Reilly, September 2013

 rwc: RESTful Web Services Cookbook. Subbu Allamaraju; O’Reilly, March 2010

 rws: RESTful Web Services. Leonard Richardson, Sam Ruby; O’Reilly, May 2007

 uri: http://en.wikipedia.org/wiki/File:URI_Euler_Diagram_no_lone_URIs.svg

 w3-axioms: http://www.w3.org/DesignIssues/Axioms.html

 waa: Designing Evolvable Web APIs with ASP.NET. Glenn Block, Pablo Cibraro, Pedro Felix, Howard
Dierking, Darrel Miller; O’Reilly, March 2014 (est.; early release March 2013)

 wiki-rest: http://en.wikipedia.org/wiki/Representational_state_transfer

