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Calorimeters P—
e
= Calorimeters are =
designed to capture the e
energy of particles = =g
= Two different types are in | |

use at LHC

= Homogeneous —
Capture all of the
energy of the incident

particle

= Sampling — capture a
portion the incident
energy and make a
correction

10 iCSC2014, Tyler Dorland, DESY



Sampling Calorimeter
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Sampling calorimeters
have a sensitive layer
sandwiched between
to heavy absorber
layers

= Absorber layers
useful to create
showers of
secondary particles

Useful for hadrons
because a
homogeneous detector
would be too large

= \Worse resolution,
though

incoming particle

CERN
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passive absorber
l l shower (cascade of secondaries)

- _— - - —J L -

Pt

active layers

Electromagnetic shower
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Jet clustering

Because we are measuring decay products we must find a way to
cluster them together to accurately represent the original particle

= A few theoretical
considerations

= |Infrared Safe

= Should not be
sensitive to soft
radiation

= Collinear Safe

= Should not be
sensitive to
collinear radiation

12
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Cone Algorithms SSon o comptin

“Seed” defines approximate seed

jet direction tracks or
towers

= All energy deposits within a
given radius are put into the
jet

= The centroid is determined
summing all particles within

the cone _
centroid = new seed
= The centroid becomes the s
new seed

= |[terated until stable

13
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Mid-point cone algorithm

= Search for missing jets using the midpoint of all jet pairs as a
seed midpoint

&

= If thereis a stable cone consider the energy deposits shared
between the two jets (Egpareqd)

JET #1 «—JET #2
ijet1>ijet2

= Takef = EShared/EjetZ

= If f> 50% merge the jets; else split the jets
14
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Begin with a list of hits and calorimeter towers

Calculate
= For each preclusteri:d; = pT i

Ay? + Ad?
= For each pair (1,j): di; —mzn(pTZ,p?rJ) y~+ ¢

D2

Find the minimum, d_;,.,

of all d; and d;

If d i Is @ d;;, remove preclusters i and j from the list and

replace with a new merged precluster

If d.,i, IS a d,, precluster | is not “mergeable” and can be added
to the list of jets

Repeat until list is exhausted
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FastJet Software
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= FastJet (fastjet.fr) is acommonly used tool in HEP that
calculates cones for many different algorithms

= |t also contains many
algorithmic
Improvements
= Kralgorithm is O(N?)
= FastJet KT is O(NInN) z
= |dentical results

= Used in many
experiments, so it’s
Input structure is
Independent

10" |
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Fast Jet Input el Computn
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= FastJet is only a clustering algorithm
= |t doesn’t need information about the detector, beam, etc.

= The only thing it needs as input are momentum 4-vectors

// an event with three particles: pX PY p=z E

particles.push back( PseudoJet( 99.0, 0.1, 0O, 100.0) ):
particles.push back( PseudoJet( 4.0, -0.1, 0, 5.0) ):
particles.push back( PseudoJet( -99.0, 0, 0, 99.0) ):

= |t only outputs 4-vectors (improtant later)

Clustering with Longitudinally invariant anti-kt algorithm with R = 0.7
and E scheme recombination
pt y phi

jet 0: 103 0 O

constituent 0's pt: 99.0001

constituent 1's pt: 4.00125
jet 1: 99 0 3.14159

constituent 0's pt: 99
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Corrections G of Computing

However all of these objects need corrections for various reasons. Jets need to be corrected for

—f==sf=== = detector and algorithm inefficiencies Erow
CH 1: - o :: We want to correct to the Eptcl . get
! [ i 1 particle level (before any detector jet F x R S
i . o 1 interaction) using this algorithm: —
i FH "' : 5 0.5 ' R . ol *...
£ - : A T L esponse: Offset: Energy deposits
- ; gy . . . ’
’ y 3 un <+ [Thisterm estimates |  from noise, electronics
EM ~ | a . . .
: ﬂm'—,-l_:":r‘MeasurEd |7 //" the energy or multiple interactions
________ TN 5 :E: / s deposited in g DO Run Il ) Aol
= 4 "oa - = X - ERF
by i . .. . honsensitive regions| & | *
2 £ T or inefficiencies in Y
I Cowe the CC 5
a Then corrects the response of T
8 . o
] forward regions to that of the CC
5 119 . ~—rry ¢
= £105- D@ Run I . :ffj . | e
. _ O Rume=07 oSy, emw Showering:
Applied to all jets 7 N —— 5
050 Energy not
0.85 /“’,L* LN =
omf 77 /N2 . accounted
o / \ ] for by the
st/ | jet cone
060 '3 = 1 0 ] P 3 - M 2o 100 200 1000 I H h
: . . e E'[GeV] 4 gorlt m
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Combining Measurements ot Compus

Need JES foi

Neutral Partic

Calorimeter only measurement subtract average calorimeter and inefficienc
energy from track Raw TrackCal Jet Energy

= |t can be advantageous to use different parts of the detectors
for different measurements for the constituents of the jets

= For example, we can sometime replace a calorimeter
measurement with a tracker measurement associated to it

= For low momenta, the tracker measurements are more precise

21
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Classifcation Technigques
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= Found two variables

= What is the best cut

Rectangular cuts? A linear boundary? A nonlinear one?

23 iCSC2014, Ty|er Dor|and7 DESY é
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Multivariate Techniques

= Finally we can combine all
these measurements in to
very power multivariate
analysis (MVA) techniques

= These can give a measure
of how likely a jet is to be a

b-jet
[;{j = cEJ [xj - cE] [_:-{j = c3] [;-:j - c3]

= Onetechnique is a decision
tree that makes a series of £ :

cuts on different input (> o) (i <cd

variables
= Then reclassified by the @

Gini index p(1-p)

24



Decision trees - weighting
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= The treeis trained against a known truth (from MC)

= Misclassified events are given a larger weight then retrained

O signal 0 barkgrmmd ————— current tree all trees
2 'O i : 2 [ & # 2 f i )
| 0 1st tree o 10th tree | « 150th tree
0 00 o qj . “« 0 * a|
[ .‘
0t o Of o} O 1 ot amm v
f %@ _____ '_u_ﬂ_ _ : :0 T 0
0 "0 "0
2 0$0 -2 0¥ 1 -2 °|® Q
-1 0 2 -1 0 1 2 -1 0 1 2
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= In the end we get a better
discriminator than any
simple cut of
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TMVA Software R

= The Toolkit for Multivariate Analysis (TMVA
[http:/tmva.sourceforge.net/]) is the standard software for
Implementation of classification/regression techniques in HEP

= |t contains algorithms for many Classification/Regression
techniques

= Standard Tool for BDTs etc in HEP

27
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= TMVA again is experiment
Independent

= |t doesn’t want or need details

about your detector, beam, etc.  mwsmm "™ ew—"—" " mﬁbm
= All it takes for input are
histograms (important for latter)
= Or properly formatted vectors
= Itreturns a function such thatall  1.=e | ™ cpcdtior
it will need are the input il Output

variables of the event

i I
LI T T T[T
:
N
-
e
Lseloaslinelisn bl
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Laptops — A Powerful Tool in HEP 7™

= LHC experiments store 10s
of petabytes of information

= But not all of it is useful for
every part of every e |

peiMatchGsiFitBamet 1,1

comectedilandEndcapSuperClus

07 AOD Event size (kB/ev)

~ genParticeCandidates:22,0
.

islandBasicClusters:1,2 —-.

an a | yS i S T

pixeiMatchGsfElectrons: 1,3
siStripElectrons: 1,3
iterativeCone7CaloJets: 1,5
midPaintConeSCaolets:1,5 B
HecatheConeSCabJets:1.6 ———

midPaintCone7CaloJets: 16 —
Kt10CaboJets:16

FasttioCabets:1,6 /-—aranMaledarTecks 82
Fastiet6CabJets:17 — e
hybrddSuperClusters:1,9 g S e/ — caloToners7,5
midPoirtConeTGenJetsNoNuc19 —7= /
midPointCone7Genlets 19—

= pirelTracks 6,6
midPointConeS5GenJetsNoNu:2.0

midPointCone5GenJets 2.0

iterativeCone7GenJetsNoNu:2,2
iterativeCone7GenJets:2,2
iterativeConeSGenJetsNoNu:2 2

rsWithMatedalTracks:3,2

"’\"" —
FaslblﬁGav\JeBNaMLZ9

iterativeConeSGenlJets:2,2

Fastpti0E1Cablets23 Fastet10GenJets:2,6 ' |
AL Kil0Genlets:26  Kt10GenJetsNoNu2.6 Fastpt10GenJetsNohu2.6
IslandBasicClusters:2.6
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Laptops — A Powerful Tool iIn HEP

= LHC experiments store 10s
of petabytes of information

= But not all of it is useful for
every part of every
analysis
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&1 Folders | contents of /ROCT Files/naf_prZpat_ntuple2_py_for_mumu_ttharsignalplustau_mumu_ttharsign
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Subset used for a top analysis
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Event Flow

= What you could do

= Or we could introduce intermediate steps

32

iCSC2014, Tyler Dorland, DESY



From Quark to Jet: A Beautiful Journey Lecture 2 "

CERN
School of Computing

MC Samples

CMS Preliminary, 12.1 fb'at ys =8 TeV

= Many different " olu+ Jots Combined ® Data
samples for many B i Signal
different : B 2+ Jets
backgrounds - 1QCD Multiet

I Single Top
[ 1Diboson

= Sometimes over 20
samples per
analysis

= Each can be treated
separately | ?

33
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Mass Parallelization
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Particle ID - RICH

= Cherenkov raditation is
emitted when a particle
passes through a
medium and is initially
going faster than the
speed of light in that
medium

= Aring of lightis
emitted that is
proportional to the
momentum

35
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Cherenkov angle:

1
cosf.= —

ng

Simple
Geometric derivation:

AR =Pc-t
AC =c/nt

cos B =AC Az =c/n-t/(Bc-1)
=1/nB
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Particle ID - RICH

C+ Co
m, K, p
*—-—_b"‘% ”””””” I .—-_*
[momentum p] N1 N2 > NA
= By choosing the correct ' LHCb RICH Event
media, we can use thisas a [ _ [December 2009]

for of particle identification
= Lightin C, and C, = Pion
= Light in just C1 = Kaon
= No light = proton

36
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B-tagging Inputs

(ingredients)

electrons, muons

(intermediate
objects)

» Soft Muon
» Soft Electron

» Track Counting
» Jet Probability

» Simple Secondary Vertex

. * Combined Secondary Vertex E

37
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Output

= Using the inputs from
multiple parts of the detector ;g2
we can make a better

judgement on if the jet we P

are measuring came from a

b-quark or another source [0

38
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Physics Analysis

. Dilepton Combined e Data Dilepton Combined e Data
C I i Signal ] I i Signal
[ i 0 if Other

[ tf other
B Single Top 1
I W+Jets -
Z /" — eelup
Iy =1t

B Single Top
I W+Jets

= B-tagging can reduce some background by over 90%

= As well as increase the signal-to-noise ratio!

39 iCSC2014, Tyler Dorland, DESY
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Conclusions e
= Jet algorithms are designed to make up for the inefficiencies
created by finite resolution of our calorimeters
= These algorithms are well suited for personal computing

= Aspects from many different portions of the detector can be
combined using statistical tools such as decision trees to
determine how likely it is that a particular jet came from a b-
guark

= Thanks for listening!
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Backup

41

From Quark to Jet: A Beautiful Journey Lecture 2

iCSC2014, Tyler Dorland, DESY

CERN
School of Computing



From Quark to Jet: A Beautiful Journey Lecture 2

Data Storage - NTuples
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