FUTURE CIRCULAR COLLIDER WORKSHOP 13. / 14. FEBRUAR 2014, GENEVA **Gotthard Basetunnel** **Aspects of Long Tunnels** presented by: M.Sc. F Amberg Amberg Engineering Ltd., Regensdorf, Switzerland ## Content | 4 | | | 4 . | | |---|-------|------|------|----------| | 1 | Intro | 2411 | Ct16 | ۱n | | | | Juu | CHIL | <i>)</i> | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 3. Gotthard Basetunnel: Some Constructional Aspects - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel ## Introduction ## Main Challenges of Long (and Deep) Tunnels - Tunnel length leeds to long construction time - Mechanization / automation of procedures, trend to the use of TBM in order to increase performance - Intermediate points of attack (if feasible) to cut construction time - Geological variety, (high overburden) - Investigations - Not possible / reasonable over the entire length - Higher remaining risks compared to other projects - Logistics - Long transport distances - Access shafts and galleries - Muck treatment, material deposits ## Content | 1 | n | fr. | \sim | A | | <u> </u> | fi, | $\overline{}$ | n | |---|---|-----|--------|---|---|----------|-----|---------------|---| | | | LI | U | u | u | U | Lľ | U | | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel # More and More People and Goods Cross the Alps (Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002) # Traffic Crossing the Alps, Estimated Increase between 1991 and 2020 AMBERG # The Modernisation of the Railway Infrastructure Shall Enhance Transferring Traffic from Road to Rail The political pressure from the EU to have more traffic capacity through the Alps resulted in a political decision in Switzerland that this trafic should be on rails (Source: www.alptransit .ch) ## What's the Gotthard Axis? #### The Gotthard axis includes the - Zimmerberg Base Tunnel (works are supended) - Gotthard Base Tunnel GBT (under construction) - Ceneri Base Tunnel (under construction) The new route makes freight transportation more productive and passenger traffic faster (Source: www.alptransit .ch) # Gotthard Axis, Longitudinal Profile ## Content | 4 | اممعدا | 1 | |----|--------|---------| | 1. | Introd | luction | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel ## Reasons of the Swiss Government for the NEAT - Transport political: transfer long distance traffic from road to rail - Environmental: reduction the number of trucks, protection of the environment - National politics: network instead of only one axis, improved connection between north and south - **Economical:** connection to Europe's high speed rail network - European political: Switzerland strengthens its central role in Europe # **Public Votations on the NEAT Project** # For the NEAT scheme the Swiss population voted three times: - on the introducing of a tax on the transportation of heavy goods (freight) - on the overall financing of the project - on the technical scheme: network instead of only one axis # Over-all Organisation: Federal Government, Operating Companies and Clients (Source: www.alptransit .ch) ## **Planning Approvals Procedure** - publications in official journals - 30 days for public consultancy at the local communities - public stake out ### Authorised to raise objections - Owners of affected estates - Keepers of respective rights as neighbours - Person who are concerned as leasers or tenants - Communities Where to raise objections: only directly at the BAV (Ministry of Transport) # **Permanent Communication: Bodio Visitor Centre** ## Content | 4 | 1 4 | | |---|-------|---------| | 7 | Intra | duction | | | | auction | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel # Source of the Capital (30 Billion CHF – for entire NEAT scheme) ## Use of the Capital (30 Billion CHF) ## **Credit versus Contract Costs** #### The NEAT credit: - was established at a very early phase and was approved by the government - it was based on a ,probable' geological situation and has a reserve lump sum for ,unexpected events and conditions' #### The NEAT costs: - the cost is the sum of all contracted works - the cost forecast is constantly (i.e. every 6 months) up-dated according to the progress of the planning and/or the work and compared with the credit. The margin between costs and credit was originally + 25%. The final costs can now be estimated with +-5%. ## **Development of Total Costs and Risk Potential (total axis)** (Source: AlpTransit Gotthard AG) # **Cost Overruns: Magnitude and Reasons** There had been a constant increase in investments and costs for the Gotthard Basetunnel (primilary figures) **Magnitude in total:** approx > 3 Mia CHF (ca 40%) ### Reasons: | Constracts and construction: | approx | 2% | |--|--------|-----| | Geology: | approx | 18% | | Improvements for the public and the environment: | approx | 7% | | Political delays and financial restrictions: | approx | 21% | | Safety and state-of-the-art technology: | approx | 53% | Quelle: AlpTransit Gotthard AG ## Content | 4 | 1 1 | | 1! _ | | |---|------|------|-------|------| | 1 | intr | ווחח | ıctic | n | | | | vuu | IVIIV | ,,,, | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel # Three Alternatives for the Alignment of the GBT (Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002) ## **Geological Alignment** - Areas with highest overburden → bypass - Major fault zones: - "Tavetsch Intermediate Massif" - shortest possible crossing - "Useren Gavera Zone" (probably aquiferous) → drive on the rise - "Piora Basin" → shortest possible crossing, upwards drive - As large distant to reservoirs and dams possible ## **Overview GBT** **Geological Longitudinal Profile** # Possible Tunnel Systems of the GBT 1 double-track tunnel and 1 service tunnel 3 single-track tunnels, of which one used as service tunnel 2 single-track tunnels and 1 service tunnel 2 single-track tunnels constructed to higher standard : Ø : 12.3 m # **Project** ## **Standard Cross Section TBM Drive** ## **Geology and Heading Sections** ## **Gotthard Base Tunnel, Schedule** (Source: www.alptransit.ch) ## Content | 4 | 1 1 | | 1! _ | | |---|------|------|-------|------| | 1 | intr | ווחח | ıctic | n | | | | vuu | IVIIV | ,,,, | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel ## Gotthard Base Tunnel, Geological Longitudinal Profile ## Two major geotechnical critical zones # **Geological Investigations TZM and UGZ** # **Geological Investigations Piora Bassin** # **Exploration Drillings during Excavation** ### 3D Tunnel Seismic Prediction ahead of Tunnel Face ### **3D Tunnel Seismic Prediction** ### 3D-seismic velocity distribution ahead of the tunnel face ### **3D Tunnel Seismic Prediction** ### 3D also, under specific conditions, of karst phenomena # **Exploration - Decision Tree** Gotthard-Basistunnel Los 452/554, Tunnel Faido Vorauserkundung TBM-Vortrieb Konzept Ausführung Bericht: R175/06.010 J Amberg Engineering AG, Regensdorf, 22. Mai 2008 ### **Exploration - decision tree** #### Systematic exploration - Measure of temperature - **Tunnel Seismic Prediction** - Percussion drillings - Protected with preventer #### **Depending on the results** Vorauserkundung TBM-Vortrieb Konzept # Additional exploration - Borlog scanning - additional percussion drilling - Core drilling - Protected with preventer Preparation for all site characteristics **Logistics – Important Support** ### **Conditions / bases** ## Logistics ### **Logistics through Shafts** Definition of a coherent logistic concept serving as base for: - the necessary hoisting systems in the shaft - all other elements of the supply chain - final necessary shaft diameter - necessary transport handling elements at the shaft foot #### **Base for the Shaft Dimensions** #### Construction period - Hoisting of muck material - Supply of support material - Transport of all further material - Ventilation (fresh air and exhaust air) - Hoisting of personell and rescue - Supply pipelines #### Operation period - Exhaust air shaft - Fresh air shaft - Space for hoisting installations - Cable ducts # **Logistics through Shafts** #### Sedrun Shaft at Gotthard Basetunnel #### Main Characteristics of Sedrun Shaft - 800 m deep - Diameter of excavation 8.6 m - Preliminary support with shotcrete and anchors - Concrete lining t = 25 cm - Inner diameter 7.9 m ## Section of Shaft I Sedrun with Equipment shotcrete concrete lining 25 cm lifting cage (6 m x 2.5 m) 2 x 16 kV high voltage 2 x 16 kV high voltage data transmission cable cable mechanical plumb reservoir feeder line Ø 300 compressed air line abe water line to tunnel ground water line Ø 100 cement pipe Ø 400 data transmission cable ground water pumping line Ø 400 Compressed air line Ø 300 additional lift 2 x 9 persons $0 \, \mathrm{mm}$ Compressed air line Ø 300 counter weight Zement Litung Ø400 mm ground water pumping line Ø 400 cooling water line Ø 200 ## **Construction Phases (Excavate the Caverns at Shaft Foot)** ### **Caverns at Shaft Foot** ## **Bench Heading in Longitudinal Cavern** ### **Concrete Production Plant at Shaft Foot** Even large end complex installations can be put at the foot of shafts and run from there ## Assembly of TBM Underground TBM + Back-up Installations = 440 m TBM can be assembled, transported from one drive to the next and disassembled underground Source: www.AlpTransit Gotthard.ch ## **TBM Transport Underground by Low-Loading Truck** ## **Dismantling of TBM Underground** (Source: www.Apltransit.ch) ## **Dismantling of TBM Underground** Source: AlpTransit Gotthard AG ### Soft Ground TBM with High Groundwater Pressure TBM in soil and water pressure up to 10 bars are state of the art (example:Westershelde Tunnel in NL) ## Mixed Use of TBM (Rock and Soil) Nowadays rock and soil can be excavated with the same TBM, necessary adaptations are made underground (example: Weinberg tunnel Zurich) ## **Final Lining** TBM and segmental lining with pre-casted elements results in a watertight final lining #### Content | 4 | 1 1 | | 1! _ | | |---|------|------|-------|------| | 1 | intr | ווחח | ıctic | n | | | | vuu | IVIIV | ,,,, | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel #### **Amounts of Excavated Material** (Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002) ### **Recycling of Excavated Material** ## **Muck Treatment Plant on Installation Site Amsteg** (Source: www.Apltransit.ch) ### Faido - Muck Treatment / Concrete Production •Quelle: AlpTransit Gotthard AG ## **Muck Conveyor Belt** ## Faido - Muck Deposit Cavienca •Quelle: AlpTransit Gotthard AG Bodio – Muck Deposit Buzza di Biasca ## Sedrun - Muck Deposit Val Bugwei •Quelle: AlpTransit Gotthard AG #### Content | 4 | 1 1 | | 1! _ | | |---|------|------|-------|------| | 1 | intr | ווחח | ıctic | n | | | | vuu | IVIIV | ,,,, | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel # Design and Risk Assessment Process Safety integrated design for the GBT ## **Best solution = Maximum Total Utility** Aim at the overall best solution: - Include various aspects (in accordance with the defined objectives and goals) - Define total utility by weighing of the relevant aspects: ## **Comparison of Solutions** ## **Risk and Safety Assessment** #### Other Tunnel Types than Railway Tunnels The integrated design process is dependent on the actual conditions of - the tunnel - the traffic and composition - economy - Safety and rescue concepts - operational conditions - etc. For another tunnel even of similar length some significant parameters may deviate. Hereby another concept for the tunnel may prove to be preferable. #### Content | 4 | 1 1 | | 1! _ | | |---|------|------|-------|------| | 1 | intr | ווחח | ıctic | n | | | | vuu | IVIIV | ,,,, | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel ## Risk Management in Underground Construction In the Gotthard Axis the constructional risks and their cost relevance have been evaluated at least every 6 months ## **Risk Management** Risk management is the systematic process of identifying, analyzing and responding to project risks. #### Risk management is - not only a single event - a continuous process during the entire project. Therefore the risk control is part of the project life cycle from project initiation to project completion. ## Risk Responding, Range of Geological Risks 1992 and Accuracy of Cost Estimation +/- 25% (Source: Baumgärtner, Büchler, Systematik der Kostenrisiken am Beispiel Gotthard Basistunnel, Kasseler Projektmanagement Symposium 2005) ## Risk Responding, Range of Geological Risks 2002 and Accuracy of Cost Astimation +/- 10% (Source: Baumgärtner, Büchler, Systematik der Kostenrisiken am Beispiel Gotthard Basistunnel, Kasseler Projektmanagement Symposium 2005) #### Content | 4 | 1 4 | | |---|-------|---------| | 7 | Intra | duction | | | | auction | - 2. NEAT and Gotthard Basetunnel: From Concept to Completion - 2.1 Background - 2.2 Contractual and Organisational Aspects, Communication - 2.3 Costs - 3. Some Constructional Aspects Gotthard Basetunnel - 3.1 Investigation, Logistics, Excavation, TBM - 3.2 Environment, Muck Treatment - 3.3 Safety, Fire Prevention and Control, Ventilation - 4. Risk and Risk Mitigation - 5. FCC and Gotthard Basetunnel #### **FCC** and Gotthard Basetunnel | | item | GBT | FCC | С | nc | |---|-----------------------------------|---|---|---|----| | purpose | use in operation | single track high speed train tunnel | experimental structure | | х | | geographical and
geological conditions | rock conditions | pre alpine and alpine rock formations heavily
tectonically deformed with great fault zones
(expl. Piora) | mostly flat layers of bedrock few disturbed in contact zones with pre alpine rock and limestone of Jura formations | | x | | | overburden | up to 2000 m middle hard to hard rock often tectonically deformed metamorphic rock | up to 600 m soft to middle hard rock mostly undisturbed bedrock | | X | | | core drilling (geol. prospection) | in the high mountains often impossible to find access or place to drill systematically every some 100 m | in FCC area every point of the future construction can be easily reached with a core drill | | x | | Tunnel climate (temperature and air) | tunnel temperature | rock temperature span lies between some minus degrees (winter time) up to over 40 degrees | more or less constant rock temperature, variations of temperature might influence experiments | | x | | | air movements | high speed trains are pushing the air through the tunnel when passing | no air movements except turbulences in areas where a machine is producing a lot of heat | | x | | | fresh air | during operation air has to be changed continuously also to avoid upcoming mist which affects train drivers sight | during maintenance FCC to be ventilated according to number of staff and machines in tunnel, for operation specifications are to be fixed | | x | | safety | fire-life-safety-system | persons in trains are not trained to behave
during any hazard or how to extinguish a fire | staff of CERN will be trained and well instructed about where to go or handle any hazard | | x | | | evacuation | Up to 1000 persons in one train have to be brought as fast as possible to a save well illuminated and ventilated protected room or trough an escape tunnel to the surface | staff in sectors which can be evacuated can use
this way, all others can be brought to safety
chambers (also used during construction and
accelerator installation) to wait there for being
rescued | | X | (c = comparable, nc = not comparable) #### **FCC** and Gotthard Basetunnel | | item | GBT | FCC | С | nc | |--------------------|---|---|---|---|-----| | Realization of FCC | owners organisation (planning/ realization/ starting operation) | complex project with different stages (planning construction, rail engineering and safety/ tendering and realization civil construction / tendering and realization rail engineering / tendering and realization safety / hand over from construction to rail engineering and safety installations, starting operation) | complex project with different stages (planning construction, accelerator and safety / tendering and realization civil construction / tendering and realization accelerator / tendering and realization safety / hand over from construction to accelerator and safety installations, starting operation) | X | | | | site logistic | 5 big building sites were necessary to realize the whole project, sites also used for rail engineering and safety purposes | 4 – 5 big building sites and 4 to 5 middle sized building sites will be necessary to realize the whole project, sites also used for accelerator installation and safety purposes | X | | | | aggregate processing of muck and/or disposal | all building sites were equipped with
aggregate processing plants to prepare
aggregates for the concrete, muck was
disposed in landfills and lake Lucerne | Encountered rock is mostly not suited for aggregate processing, muck could be used for landscaping around surface buildings of shaft accesses, rest to be deposed in landfills | | (x) | (c = comparable, nc = not comparable)