FUTURE CIRCULAR COLLIDER
WORKSHOP 13. / 14. FEBRUAR 2014, GENEVA

**Gotthard Basetunnel** 

**Aspects of Long Tunnels** 

presented by:

M.Sc. F Amberg

Amberg Engineering Ltd., Regensdorf, Switzerland



## Content

| 4 |       |      | 4 .  |          |
|---|-------|------|------|----------|
| 1 | Intro | 2411 | Ct16 | ۱n       |
|   |       | Juu  | CHIL | <i>)</i> |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
- 3. Gotthard Basetunnel: Some Constructional Aspects
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



## Introduction

## Main Challenges of Long (and Deep) Tunnels

- Tunnel length leeds to long construction time
  - Mechanization / automation of procedures, trend to the use of TBM in order to increase performance
  - Intermediate points of attack (if feasible) to cut construction time
- Geological variety, (high overburden)
- Investigations
  - Not possible / reasonable over the entire length
  - Higher remaining risks compared to other projects
- Logistics
  - Long transport distances
  - Access shafts and galleries
- Muck treatment, material deposits



## Content

| 1 | n | fr. | $\sim$ | A |   | <u> </u> | fi, | $\overline{}$ | n |
|---|---|-----|--------|---|---|----------|-----|---------------|---|
|   |   | LI  | U      | u | u | U        | Lľ  | U             |   |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



# More and More People and Goods Cross the Alps



(Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002)



# Traffic Crossing the Alps, Estimated Increase between 1991 and 2020



AMBERG

# The Modernisation of the Railway Infrastructure Shall Enhance Transferring Traffic from Road to Rail



The political pressure from the EU to have more traffic capacity through the Alps resulted in a political decision in Switzerland that this trafic should be on rails

(Source: www.alptransit .ch)



## What's the Gotthard Axis?

#### The Gotthard axis includes the

- Zimmerberg Base Tunnel (works are supended)
- Gotthard Base Tunnel GBT (under construction)
- Ceneri Base Tunnel (under construction)

The new route makes freight transportation more productive and passenger traffic faster



(Source: www.alptransit .ch)



# Gotthard Axis, Longitudinal Profile





## Content

| 4  | اممعدا | 1       |
|----|--------|---------|
| 1. | Introd | luction |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



## Reasons of the Swiss Government for the NEAT

- Transport political: transfer long distance traffic from road to rail
- Environmental: reduction the number of trucks, protection of the environment
- National politics: network instead of only one axis, improved connection between north and south
- **Economical:** connection to Europe's high speed rail network
- European political: Switzerland strengthens its central role in Europe



# **Public Votations on the NEAT Project**

# For the NEAT scheme the Swiss population voted three times:

- on the introducing of a tax on the transportation of heavy goods (freight)
- on the overall financing of the project
- on the technical scheme: network instead of only one axis



# Over-all Organisation: Federal Government, Operating Companies and Clients



(Source: www.alptransit .ch)



## **Planning Approvals Procedure**

- publications in official journals
- 30 days for public consultancy at the local communities
- public stake out

### Authorised to raise objections

- Owners of affected estates
- Keepers of respective rights as neighbours
- Person who are concerned as leasers or tenants
- Communities

Where to raise objections: only directly at the BAV (Ministry of Transport)



# **Permanent Communication: Bodio Visitor Centre**





## Content

| 4 | 1 4   |         |
|---|-------|---------|
| 7 | Intra | duction |
|   |       | auction |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



# Source of the Capital (30 Billion CHF – for entire NEAT scheme)





## Use of the Capital (30 Billion CHF)





## **Credit versus Contract Costs**

#### The NEAT credit:

- was established at a very early phase and was approved by the government
- it was based on a ,probable' geological situation and has a reserve lump sum for ,unexpected events and conditions'

#### The NEAT costs:

- the cost is the sum of all contracted works
- the cost forecast is constantly (i.e. every 6 months) up-dated according to the progress of the planning and/or the work and compared with the credit.

The margin between costs and credit was originally + 25%. The final costs can now be estimated with +-5%.



## **Development of Total Costs and Risk Potential (total axis)**



(Source: AlpTransit Gotthard AG)



# **Cost Overruns: Magnitude and Reasons**

There had been a constant increase in investments and costs for the Gotthard Basetunnel (primilary figures)

**Magnitude in total:** approx > 3 Mia CHF (ca 40%)

### Reasons:

| Constracts and construction:                     | approx | 2%  |
|--------------------------------------------------|--------|-----|
| Geology:                                         | approx | 18% |
| Improvements for the public and the environment: | approx | 7%  |
| Political delays and financial restrictions:     | approx | 21% |
| Safety and state-of-the-art technology:          | approx | 53% |

Quelle: AlpTransit Gotthard AG



## Content

| 4 | 1 1  |      | 1! _  |      |
|---|------|------|-------|------|
| 1 | intr | ווחח | ıctic | n    |
|   |      | vuu  | IVIIV | ,,,, |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



# Three Alternatives for the Alignment of the GBT



(Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002)



## **Geological Alignment**

- Areas with highest overburden → bypass
- Major fault zones:
- "Tavetsch Intermediate Massif"
  - shortest possible crossing
- "Useren Gavera Zone" (probably aquiferous) → drive on the rise
- "Piora Basin" → shortest possible crossing, upwards drive
- As large distant to reservoirs and dams possible





## **Overview GBT**





**Geological Longitudinal Profile** 





# Possible Tunnel Systems of the GBT

1 double-track tunnel and 1 service tunnel





3 single-track tunnels, of which one used as service tunnel







2 single-track tunnels and 1 service tunnel







2 single-track tunnels constructed to higher standard









: Ø : 12.3 m











# **Project**





## **Standard Cross Section TBM Drive**



## **Geology and Heading Sections**







## **Gotthard Base Tunnel, Schedule**



(Source: www.alptransit.ch)



## Content

| 4 | 1 1  |      | 1! _  |      |
|---|------|------|-------|------|
| 1 | intr | ווחח | ıctic | n    |
|   |      | vuu  | IVIIV | ,,,, |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



## Gotthard Base Tunnel, Geological Longitudinal Profile

## Two major geotechnical critical zones





# **Geological Investigations TZM and UGZ**





# **Geological Investigations Piora Bassin**





# **Exploration Drillings during Excavation**





### 3D Tunnel Seismic Prediction ahead of Tunnel Face



### **3D Tunnel Seismic Prediction**

### 3D-seismic velocity distribution ahead of the tunnel face





### **3D Tunnel Seismic Prediction**

### 3D also, under specific conditions, of karst phenomena





# **Exploration - Decision Tree**



Gotthard-Basistunnel Los 452/554, Tunnel Faido

Vorauserkundung TBM-Vortrieb Konzept

Ausführung

Bericht: R175/06.010 J

Amberg Engineering AG, Regensdorf, 22. Mai 2008





### **Exploration - decision tree**

#### Systematic exploration

- Measure of temperature
- **Tunnel Seismic Prediction**
- Percussion drillings
- Protected with preventer

#### **Depending on the results**

Vorauserkundung TBM-Vortrieb Konzept

# Additional exploration

- Borlog scanning
- additional percussion drilling
- Core drilling
- Protected with preventer





Preparation for all site characteristics



**Logistics – Important Support** 





### **Conditions / bases**





## Logistics





### **Logistics through Shafts**

Definition of a coherent logistic concept serving as base for:

- the necessary hoisting systems in the shaft
- all other elements of the supply chain
- final necessary shaft diameter
- necessary transport handling elements at the shaft foot



#### **Base for the Shaft Dimensions**

#### Construction period

- Hoisting of muck material
- Supply of support material
- Transport of all further material
- Ventilation (fresh air and exhaust air)
- Hoisting of personell and rescue
- Supply pipelines

#### Operation period

- Exhaust air shaft
- Fresh air shaft
- Space for hoisting installations
- Cable ducts



# **Logistics through Shafts**







#### Sedrun Shaft at Gotthard Basetunnel





#### Main Characteristics of Sedrun Shaft

- 800 m deep
- Diameter of excavation 8.6 m
- Preliminary support with shotcrete and anchors
- Concrete lining t = 25 cm
- Inner diameter 7.9 m



## Section of Shaft I Sedrun with Equipment

shotcrete concrete lining 25 cm lifting cage (6 m x 2.5 m) 2 x 16 kV high voltage 2 x 16 kV high voltage data transmission cable cable mechanical plumb reservoir feeder line Ø 300 compressed air line abe water line to tunnel ground water line Ø 100 cement pipe Ø 400 data transmission cable ground water pumping line Ø 400 Compressed air line Ø 300 additional lift 2 x 9 persons  $0 \, \mathrm{mm}$ Compressed air line Ø 300 counter weight Zement Litung Ø400 mm ground water pumping line Ø 400 cooling water line Ø 200

## **Construction Phases (Excavate the Caverns at Shaft Foot)**



### **Caverns at Shaft Foot**





## **Bench Heading in Longitudinal Cavern**





### **Concrete Production Plant at Shaft Foot**



Even large end complex installations can be put at the foot of shafts and run from there



## Assembly of TBM Underground TBM + Back-up Installations = 440 m





TBM can be assembled, transported from one drive to the next and disassembled underground

Source: www.AlpTransit Gotthard.ch



## **TBM Transport Underground by Low-Loading Truck**





## **Dismantling of TBM Underground**



(Source: www.Apltransit.ch)



## **Dismantling of TBM Underground**



Source: AlpTransit Gotthard AG



### Soft Ground TBM with High Groundwater Pressure



TBM in soil and water pressure up to 10 bars are state of the art (example:Westershelde Tunnel in NL)



## Mixed Use of TBM (Rock and Soil)



Nowadays rock and soil can be excavated with the same TBM, necessary adaptations are made underground (example: Weinberg tunnel Zurich)



## **Final Lining**



TBM and segmental lining with pre-casted elements results in a watertight final lining





#### Content

| 4 | 1 1  |      | 1! _  |      |
|---|------|------|-------|------|
| 1 | intr | ווחח | ıctic | n    |
|   |      | vuu  | IVIIV | ,,,, |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



#### **Amounts of Excavated Material**





(Source: GBT, der längste Tunnel der Welt, Die Zukunft beginnt, Hrsg. R.E. Jeker Werd Verlag Zürich, 2002)



### **Recycling of Excavated Material**





## **Muck Treatment Plant on Installation Site Amsteg**



(Source: www.Apltransit.ch)



### Faido - Muck Treatment / Concrete Production



•Quelle: AlpTransit Gotthard AG



## **Muck Conveyor Belt**





## Faido - Muck Deposit Cavienca



•Quelle: AlpTransit Gotthard AG



Bodio – Muck Deposit Buzza di Biasca





## Sedrun - Muck Deposit Val Bugwei



•Quelle: AlpTransit Gotthard AG



#### Content

| 4 | 1 1  |      | 1! _  |      |
|---|------|------|-------|------|
| 1 | intr | ווחח | ıctic | n    |
|   |      | vuu  | IVIIV | ,,,, |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel







# Design and Risk Assessment Process Safety integrated design for the GBT



## **Best solution = Maximum Total Utility**

Aim at the overall best solution:

- Include various aspects (in accordance with the defined objectives and goals)
- Define total utility by weighing of the relevant aspects:



## **Comparison of Solutions**





## **Risk and Safety Assessment**



#### Other Tunnel Types than Railway Tunnels

The integrated design process is dependent on the actual conditions of

- the tunnel
- the traffic and composition
- economy
- Safety and rescue concepts
- operational conditions
- etc.

For another tunnel even of similar length some significant parameters may deviate.

Hereby another concept for the tunnel may prove to be preferable.



#### Content

| 4 | 1 1  |      | 1! _  |      |
|---|------|------|-------|------|
| 1 | intr | ווחח | ıctic | n    |
|   |      | vuu  | IVIIV | ,,,, |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



## Risk Management in Underground Construction



In the Gotthard Axis the constructional risks and their cost relevance have been evaluated at least every 6 months



## **Risk Management**

Risk management is the systematic process of identifying, analyzing and responding to project risks.

#### Risk management is

- not only a single event
- a continuous process during the entire project.

Therefore the risk control is part of the project life cycle from project initiation to project completion.



## Risk Responding, Range of Geological Risks 1992 and Accuracy of Cost Estimation +/- 25%



(Source: Baumgärtner, Büchler, Systematik der Kostenrisiken am Beispiel Gotthard Basistunnel, Kasseler Projektmanagement Symposium 2005)



## Risk Responding, Range of Geological Risks 2002 and Accuracy of Cost Astimation +/- 10%



(Source: Baumgärtner, Büchler, Systematik der Kostenrisiken am Beispiel Gotthard Basistunnel, Kasseler Projektmanagement Symposium 2005)



#### Content

| 4 | 1 4   |         |
|---|-------|---------|
| 7 | Intra | duction |
|   |       | auction |

- 2. NEAT and Gotthard Basetunnel: From Concept to Completion
  - 2.1 Background
  - 2.2 Contractual and Organisational Aspects, Communication
  - 2.3 Costs
- 3. Some Constructional Aspects Gotthard Basetunnel
  - 3.1 Investigation, Logistics, Excavation, TBM
  - 3.2 Environment, Muck Treatment
  - 3.3 Safety, Fire Prevention and Control, Ventilation
- 4. Risk and Risk Mitigation
- 5. FCC and Gotthard Basetunnel



#### **FCC** and Gotthard Basetunnel

|                                           | item                              | GBT                                                                                                                                                                       | FCC                                                                                                                                                                                                             | С | nc |
|-------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| purpose                                   | use in operation                  | single track high speed train tunnel                                                                                                                                      | experimental structure                                                                                                                                                                                          |   | х  |
| geographical and<br>geological conditions | rock conditions                   | pre alpine and alpine rock formations heavily<br>tectonically deformed with great fault zones<br>(expl. Piora)                                                            | mostly flat layers of bedrock few disturbed in contact zones with pre alpine rock and limestone of Jura formations                                                                                              |   | x  |
|                                           | overburden                        | up to 2000 m middle hard to hard rock often tectonically deformed metamorphic rock                                                                                        | up to 600 m soft to middle hard rock mostly undisturbed bedrock                                                                                                                                                 |   | X  |
|                                           | core drilling (geol. prospection) | in the high mountains often impossible to find access or place to drill systematically every some 100 m                                                                   | in FCC area every point of the future construction can be easily reached with a core drill                                                                                                                      |   | x  |
| Tunnel climate (temperature and air)      | tunnel temperature                | rock temperature span lies between some minus degrees (winter time) up to over 40 degrees                                                                                 | more or less constant rock temperature, variations of temperature might influence experiments                                                                                                                   |   | x  |
|                                           | air movements                     | high speed trains are pushing the air through the tunnel when passing                                                                                                     | no air movements except turbulences in areas where a machine is producing a lot of heat                                                                                                                         |   | x  |
|                                           | fresh air                         | during operation air has to be changed continuously also to avoid upcoming mist which affects train drivers sight                                                         | during maintenance FCC to be ventilated according to number of staff and machines in tunnel, for operation specifications are to be fixed                                                                       |   | x  |
| safety                                    | fire-life-safety-system           | persons in trains are not trained to behave<br>during any hazard or how to extinguish a fire                                                                              | staff of CERN will be trained and well instructed about where to go or handle any hazard                                                                                                                        |   | x  |
|                                           | evacuation                        | Up to 1000 persons in one train have to be brought as fast as possible to a save well illuminated and ventilated protected room or trough an escape tunnel to the surface | staff in sectors which can be evacuated can use<br>this way, all others can be brought to safety<br>chambers (also used during construction and<br>accelerator installation) to wait there for being<br>rescued |   | X  |

(c = comparable, nc = not comparable)



#### **FCC** and Gotthard Basetunnel

|                    | item                                                            | GBT                                                                                                                                                                                                                                                                                                                     | FCC                                                                                                                                                                                                                                                                                                       | С | nc  |
|--------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| Realization of FCC | owners organisation (planning/ realization/ starting operation) | complex project with different stages (planning construction, rail engineering and safety/ tendering and realization civil construction / tendering and realization rail engineering / tendering and realization safety / hand over from construction to rail engineering and safety installations, starting operation) | complex project with different stages (planning construction, accelerator and safety / tendering and realization civil construction / tendering and realization accelerator / tendering and realization safety / hand over from construction to accelerator and safety installations, starting operation) | X |     |
|                    | site logistic                                                   | 5 big building sites were necessary to realize the whole project, sites also used for rail engineering and safety purposes                                                                                                                                                                                              | 4 – 5 big building sites and 4 to 5 middle sized building sites will be necessary to realize the whole project, sites also used for accelerator installation and safety purposes                                                                                                                          | X |     |
|                    | aggregate processing of muck and/or disposal                    | all building sites were equipped with<br>aggregate processing plants to prepare<br>aggregates for the concrete, muck was<br>disposed in landfills and lake Lucerne                                                                                                                                                      | Encountered rock is mostly not suited for aggregate processing, muck could be used for landscaping around surface buildings of shaft accesses, rest to be deposed in landfills                                                                                                                            |   | (x) |

(c = comparable, nc = not comparable)





