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Omissions in this talk

e Experiments to measure decays, form factors, cross-sections: only a few
discussed / mentioned. Many more examples discussed in

e Lattice QCD and HLbL: only a few words. More details: see talk by
Izubuchi at last week's MITP Workshop.

e Very new proposal: Dispersion relations approach to HLbL.

- Colangelo et al. '14
Dispersion relation for (VVVV) in v*~4* — ~*~ with external on-shell photon
k? = 0, then inserted into g — 2.
Considered so far: one-pion intermediate state (pion-pole), two pion intermediate
state (pion-loop).
See talk by Colangelo at MITP meeting last week and
- Pauk, Vanderhaeghen '14
Dispersion relation directly for a, = F»(0) via absorptive part of F»(k?).
Considered so far: resonance pole contributions (pion-pole).
See at MITP meeting last week and at this meeting.



Muon g — 2: current status

Experimental value (world average dominated by BNL experiment '06):
a® = (116 592 089 £ 63) x 10!

Theory: total SM contribution (based on various recent papers):
a)' = (116 591 795 + 47 4+ 40 + 1.8 [+£62]) x 107"
—~ ~~ X~
HVP HLbL QED + EW
Hadronic contributions are largest source of error: vacuum polarization (HVP)
and light-by-light (HLbL) scattering.
gttt = (116 4 40) x 10! (Nyffeler '09; Jegerlehner, Nyffeler '09)
Often used: afi* "™ = (105 4 26) x 107! (Prades, de Rafael, Vainshtein '09; “Glasgow
consensus”)

= a" —a;" = (294 £88) x 10! [3.3 o]

Other evaluations: a3” — a;" ~ (250 — 400) x 10~ [2.9 — 4.9 0]
(Jegerlehner, Nyffeler '09; Davier et al. '10; Jegerlehner, Szafron '11; Hagiwara et al. '11;
Aoyama et al. '12; Benayoun et al. '13)

Note: Hadronic contributions need to be better controlled (by factor two or so) in
order to fully profit from future muon g — 2 experiments at Fermilab and J-PARC
with .

Goal for HLbL (MITP Workshop): Controlled error of §ali™™" =20 x 10~ .



Hadronic light-by-light scattering in the muon g — 2

O(a®) hadronic contribution to muon g — 2: four-point function
(VVVV) projected onto a,, (external soft photon k — 0).

) )]
Consider matrix element of light-quark electromagnetic current

2

B = 2@0)0) = 3@d)) — 3Es))

between muon states:
(™ (p")I(ie)jp(0) |~ (p)) = (—ie)a(p ) p(p", p)u(p)
_ d*qr [d*q (=3 i i
@m)4 2n)* @? a3 (i +a— k)2 (p/ —q)2—m? (p' —q1 — q2)> — m?
x(—ie)*T(p W (B'— g+ m (B’ — dr— g2 + m)y u(p)

x(ie)* Myrp(q1, g2, k — g1 — q2)

with k = p’ — p and the fourth-rank light-quark hadronic tensor

Myvsp (a1, @2, 03) = / d%a / d4x2/ d*x3 el e tas ) (Q | T{j, (x1)ju (x2)ir ()i (0)} | Q)

Momentum conservation: k = q1 + q2 + g3.



Projection onto g — 2, Properties of ,,:,(q1, 92, q3)
Flavor diagonal current j,(x) is conserved and one has the
{q¥; 6562 kPY Nt g2, 93) = 0

0
= n,u,l/)\p(qlu q2, k — q1 — q2) = _kdwnpu)\o'(qlv q2, k — q1 — CI2)

Defining [,(p’, p) = kT po(p’, p) one finally obtains (Aldins et al. '70):

3 = F2(0) = 2t ((B+ My 1716+ m)T (o))

i.e. one can . Problem reduces to
calculation of two-point function with zero-momentum insertion. One also gets better UV
convergence properties of individual Feynman diagrams (fermion-loop).

Properties of T,,,x,(q1, 92, g3) (Bijnens et al. '95):
® In general 138 Lorentz structures. But only 32 contribute to g — 2.
e Using Ward identities, there are 43 gauge invariant structures.

® Bose symmetry relates some of them.

All depend on q%, qg, q%, qgi - qj, but before taking derivative and k,, — 0, also on k2, k- q;.

o Compare with HVP: one function, one variable.



HLbL in muon g — 2

Current approach: use some hadronic model at low energies with exchanges and loops of
resonances and some form of (dressed) “quark-loop” at high energies.

Problem: (VVVV) depends on several invariant momenta = distinction between low and high
energies is not as easy as for two-point function (VV) (HVP).

Note: one can always perform Wick rotation to Euclidean momenta, where effects of
resonances are smoothed out, but there are mixed regions where le is small and 022 large and
vice versa.

Data on vy — vy
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HLbL in the muon g — 2 (continued)

Classification of de Rafael '94: Chiral counting p? (ChPT) and large-N¢ counting as guideline
(all higher orders in p? and N¢ contribute):

K=pp Exchanges  of Q
— . other resonances + % .

_ _ (fO, a, h.. )
) e
Chiral counting:  p* p® p® P8
Nc¢-counting: 1 Nc¢ N¢ N¢

pion-loop pseudoscalar exchanges quark-loop

(dressed) (dressed)

Relevant scales in HLbL ({(VVVV) with off-shell photons): 0 — 2 GeV, i.e. larger than m,, !

Constrain models using experimental data (form factors of hadrons with photons) and theory
(ChPT at low energies; short-distance constraints from pQCD / OPE at high momenta).

Issue: on-shell versus off-shell form factors. For instance pion-pole versus pion-exchange: How
do we define the pion-pole contribution ? Is there a form factor at external vertex ?

Going beyond models: Dispersion relations or Lattice QCD.



HLbL scattering: anno 2009

P L O o Exchanges of Q

o A g other  reso- .
= g + -+ i + --- + nances + b o
) ) (fo,a1,h...)

BPP: +83 (32) | -19 (13) +85 (13) -4 (3) [fo, a1] +21 (3)
HKS: 490 (15) | -5 (8) 483 (6) F1.7 (1.7) [a1] F10 (11)
KN:  +80 (40) +83 (12)
MV: +136 (25) | 0 (10) +114 (10) +22 (5) [a1] 0
2007: +110 (40)
PdRV:+105 (26) | -19 (19) +114 (13) +8 (12) [fo, a1] +2.3 [e-quark]
N,JN: +116 (40) | -19 (13) +99 (16) +15 (7) [fo, a1] +21 (3)
ud.: -45 ud.: +o0o ud.: +60
ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades '96, '02; HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02;
KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04;
2007 = Bijnens, Prades; Miller, de Rafael, Roberts (compilation);
PdRV = Prades, de Rafael, Vainshtein '09 (compilation, “Glasgow consensus”);
N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09 (compilation)
® 2001: sign change in dominant pseudoscalar contribution: aTLLbL ~ 85 x 1071,
® 2004: MV = enhanced pion-pole and axial-vector contributions. Estimate shifted upwards.
® 2010: (almost) consensus reached on central value azl‘b" ~ 110 x 10!, still discussion about error
estimate. Conservative in N, JN: £40 x 10!, more progressive in PdRV: 426 x 107!,

Recall (in units of 107'): §a, (HVP) ~ 45; da, (exp [BNL]) = 63; da, (future exp) = 16



HLbL scattering: anno 2009 (continued)
e Evaluations of full HLbL scattering contribution:

— Bijnens, Pallante, Prades '95, '96, '02
Use mainly Extended Nambu-Jona-Lasinio (ENJL) model; but for some
contributions also other models (in particular for pseudoscalars and pion loop)

— Hayakawa, Kinoshita, Sanda '95, '96; Hayakawa, Kinoshita '98, '02
Use mainly Hidden Local Symmetry (HLS) model; often HLS = VMD

® Selected partial evaluations:

— Knecht, Nyffeler '02: use large-N¢ QCD for pion-pole (Lowest Meson Dominance
(LMD), LMD+V)

— Melnikov, Vainshtein '04: use large-N¢c QCD, short-distance constraint from
(VVVV) on pion-pole and axial-vector contribution, mixing of two axial-vector
nonets

® Prades, de Rafael, Vainshtein '09: Analyzed results obtained by different groups with
various model and suggested new estimates for some contributions (shifted central
values, enlarged errors). No dressed light quark loops ! Assumed to be taken into
account by short-distance constraint of MV '04 on pseudoscalar-pole contribution. Added
errors in quadrature.

o Nyffeler '09; Jegerlehner, Nyffeler '09: New evaluation of pseudoscalar exchange
contribution imposing new short-distance constraint on pion-exchange with off-shell form
factors. Combined with MV (for axial-vectors) + BPP (rest of contributions). Added
errors linearly.



HLbL scattering: anno 2009 (continued)

Some selected results for the various contributions to aELbL x 10

Contribution BPP HKS, HK KN MV BP, MdRR PdRV N, JN
w0, n, 0 85413 82.746.4 83+12 114410 - 114413 99 + 16
axial vectors 2.54+1.0 1.741.7 — 2245 - 15+10 2245
scalars —6.8+2.0 — = — — —7+7 —7+2
7, K loops —19+13 —4.51+8.1 — - - —19419 —19+413
e |- - - o | - : -
quark loops 2143 9.7+11.1 - - - 2.3 (c-quark) 2143
Total 83+32 89.6415.4 80140 136125 110+40 105 + 26 116 + 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht,
Nyffeler '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael,

Vainshtein '09; N = Nyffeler '09, JN = Jegerlehner, Nyffeler '09;

® Pseudoscalar-exchanges dominate numerically. Other contributions not negligible.
Cancellation between 7, K-loops and quark loops !

e PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is
already taken into account by using short-distance constraint of MV '04 on
pseudoscalar-pole contribution. Added all errors in quadrature !

e N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial
vectors from MV. Added all errors linearly.



Off-shell versus on-shell form factors
Resonance exchange versus resonance pole contribution



Pion-pole in (VVVV) versus pion-exchange in a/IjbyLmo

e To uniquely identify contribution of exchanged neutral pion 7" in Green's function
(VVVV), we need to pick out pion-pole:

q;

+ crossed diagrams

q, a3
lim  ((q1 4 a2)° — m3)(VWWV)
(q1+g2)2—m2
Residue of pole: on-shell vertex function (0| VV/|r) — on-shell form factor
‘7:7\'0'7*7* (q%’ q%)
e But in contribution to muon g — 2, we evaluate Feynman diagrams, integrating over

photon momenta with exchanged off-shell pions.
For all the pseudoscalars:

><

Off-shell form factors are either inserted “by hand” starting from constant, pointlike
Wess-Zumino-Witten (WZW) form factor or using e.g. some resonance Lagrangian.

Shaded blobs represent off-shell form
factor  Fpgeyeoe (@1 + 2)2, 62, 2)
where PS = 70 n, 0/, 7%, ...

e Similar statements apply for exchanges (or loops) of other resonances.



Off-shell pion form factor from (VVP)

e Following Bijnens, Pallante, Prades '96; Hayakawa, Kinoshita, Sanda '96; Hayakawa,
Kinoshita '98, we can define off-shell form factor for 7%:

/ d*x d*y e/ Ta2Y) (0] T{j,(x)ju(y)P*(0)}[0)

_ a B ’<¥w> i
Frvel % T T (G )2 — m2

Fronnyene (@1 + 2)%, af,63) + - ..

Up to small mixing effects of P3 with 1 and 7’ and neglecting exchanges of heavier

states like 7r°/, 7r0”7 o
u

Ju() = @Qu)(x), v=| d |, Q=diag2-1,-1)/3
s

(light quark part of electromagnetic current)
P3 = E’.%A;U’ = (Hi'y5u - Ei'ysd) /2, {4) = single flavor quark condensate
Bose symmetry: F 0.« ((q1 + 62)?, 47, G3) = Froerer= (a1 + G2)%, 63, 47)

e Note: for off-shell pions, instead of P3(x), we could use any other suitable interpolating
field, like (0" A3)(x) or even an elementary pion field 73(x) | Off-shell form factor is
therefore modef dependent and not a physical quantity !



On-shell form factor F. o

., . 2
704+« and transition form factor F(Q?)

e On-shell 7%y*~* form factor between an on-shell pion and two off-shell photons:
i/d4>< 0| T (x)jv (0)H7(q1 + @2)) = €pvap i G5 Froer- (a1, 3)
Relation to off-shell form factor:
Froneye (G, G3) = Frowser= (7, q1, G3)

Form factor for real photons is related to 7° — ~+ decay width:

4
2 2 2
fwow*'y*(ql = 0, g = 0) = Wrﬂ.oﬂv,‘/
Often normalization with chiral anomaly is used:
_ 1
.7:”07*7* (0,0) = —m

e Pion-photon transition form factor:
F(Qz) = fwo'y*'y*(_027 qg = O)a Q2 = _qf

Note that , but for on-shell photon !



. . . . LbyL;ﬂ—O
Pion-exchange versus pion-pole contribution to a;
e Off-shell form factors have been used to eval-
uate the pion-exchange contribution in Bijnens,
Pallante, Prades '96 and Hayakawa, Kinoshita,
Sanda '96, '98. “Rediscovered” by Jegerlehner
in '07, '08. Consider diagram:

fﬁo*v*’y*((ql + Q2)27 q%v q%) X ‘Fﬂo*v*’y((ql + q2)27 (ql + q2)27 0)
® On the other hand, Knecht, Nyffeler '02 used on-shell form factors:
fﬂow*y*(’n% ’ q%7 q%) X ]:Tro'y*'y(nﬁ ’ (ql + CI2)27 O)

e But form factor at external vertex fwow*,y(m%, (q1 + q2)3,0) for (g1 + q2)? # m2
violates momentum conservation, since momentum of external soft photon vanishes !
Often the following (misleading ?) notation was used:

}—ﬂo'y*'y*((ql + q2)27 0) = fwo-y*w* (IT72,” (ql + q2)27 O)
At external vertex identification with transition form factor was made.
e Melnikov, Vainshtein '04 had observed this inconsistency and proposed to use
-7:7707*7* (’77,277 qi q%) X }—Wovy(m%» I7727, 0)
i.e. a constant form factor at the external vertex given by the WZW term.

e Puzzle: it seems, we have two different prescriptions to define pion-pole contribution to
a,, depending on whether we go on-shell with pion momentum before or after taking
limit g4 — 0 (external soft photon). First prescription seems necessary for dispersive
approach to a, in order to avoid the exceptional momentum g4 = 0. But resulting
expression for pion-pole contribution violates momentum conservation at external vertex.



QCD short-distance constraint on (VVVV) in g —2

Melnikov, Vainshtein '04 found QCD short-distance constraint on whole 4-point function:

q, q,=0
o f’(ﬂ @i ~a5 > (a1+a2)?

- (WY, viy) TTEETE (avi)
OPE

o 4= 90,
From this they deduced for the LbyL scattering amplitude for finite qf, q%, —q3=q1+ g2
(Eq. (18) in MV '04, using our normalization for form factor; Minkowski space notation):

3 fﬂom* *(q2,q2)
Ao = e e M e 24

= oo EFY (oo £2P ermutations
2F, qg_m% (i ;") (foo f577) + permutati

fY = ql'e? — qVe! and Fipy = %ewp[,fiw for i = 1,2, 3. For external soft photon

Frv = qyey — qyey. Exceptin fyo, qs — 0 is understood.
Expression with on-shell form factor 0.« « (q%, q%) = Froysnys (m?, q%, q%) No form
factor at external vertex fﬂov*,y(qg, 0). Replaced by constant WZW form factor

fﬂoww(mi,o) ~ F, 0,0) ! = MV '04 consider the pion-pole contribution !

OWW(
If one then studies the behavior for large qg, one obtains from the pion propagator an
overall 1/q3 behavior (apart from £*). According to MV '04 this agrees exactly with

behavior of quark-loop in perturbative QCD for large momenta.

From quark-hadron duality in large-N¢ QCD it follows that the sum of all resonance
exchanges has to match with the quark-loop ! But why should already the pion-pole
contribution alone match with the quark-loop ?



Relevant momentum regions for pion-pole contribution
Impact of form factor measurements: example KLOE-2



Integral representation for pion-exchange contribution

Projection onto the muon g — 2

(Knecht, Nyffeler '02 (pion-pole with two on-shell form factors); adapted in Jegerlehner '07,
'08; Nyffeler '09; Jegerlehner, Nyffeler '09)

JLbLin® 6 d*q d*q 1
: (2m)* (27)* aia3(a1 + @2)?[(p+ a1)? — m2][(p — q2)2 — m?)]
Fpospyn (03,035 (a1 + 42)?) Frowrr, (a3, G3,0)
x[" T2 7L 3 5 Gh A AN T1(q1, q2; p)
q; — mz
Froepn (a1 + @2)%, 63, G3)  Froeper, (a1 + @2)2, (a1 + g2)2,0)
+ I T2(q1, @2; p)
(ql + q2) - mx
16 16 8
Ti(q1,q2:p) = g(p-m)(p-qz)(cu-qz) - g(p-qz)Q(ﬁ* §(P-q1)(q1-qz)q§
16 16 16
+8(p @)t a3 — ?(P'CD) (q1-q2)* + 3 m’ ai 5 — 3 m? (q1 - q2)°
16 16 8
Ta(auaip) = S (pra)(p-a@)(a-@) - 5 (Pra)?d + S (p-ar) (- a)a

8 8 8
+3(pra)aia + S miatad — S mi(aa)?

where p? = mi and the external photon has now zero four-momentum (soft photon).



Relevant momentum regions in aLbL7T

o In Knecht, Nyffeler '02, a 2-dimensional integral representation was derived for a certain
class (VMD-like) of form factors (schematically):

Lwa / dQI/ d@ > wi(Q1, @)

with universal weight functions w;. Dependence on resides in the

e Expressions with on-shell form factors are maybe not valid as they stand. Maybe one
needs to set form factor at external vertex to a constant to obtain pion-pole contribution
(Melnikov, Vainshtein '04). Expressions valid for WZW and off-shell VMD form factors.

® Plot of weight functions w; from Knecht, Nyffeler '02:
" (QQ) vy (M,Q,.Q,)
® wy, (Q1, Q2) enters for WZW form factor.
Tail leads to In? A divergence for
¢ ¢ momentum cutoff A.

° enters for form
1§ 0s S 0s " factor.

Q, [Gev] 00 QGev] Q, [Gev] 00 QGev]
® Relevant momentum regions around
g M%) o My Q022 0.25 — 1.25 GeV. As long as form factors
in different models lead to damping,

expect comparable results for aLbL = , at

level of 20%.

-05
3

00

1 T 1 1
Q,[Gev] Q, [GeV] Q, [Gev] Q, [Gev]



. . . . .0
General form factors: 3-dimensional integral representation for abbL'”

® 2-loop integral — 8-dim. integral. Integration over 3 angles can be done easily

® 5 non-trivial integrations: 2 moduli: |q1],
(recall p? = mi)
e Observation: p- g1, p- g2 do not appear in the model-dependent off-shell form factors

f

0% e

3angles: p-q1, p- g2, q1- G2

. . . . .0
e Can perform those two angular integrations by averaging expression for a{;bL*’T

direction of p (Jegerlehner + Nyffeler '09)

over the

Method of Gegenbauer polynomials (hyperspherical approach)
(Baker, Johnson, Willey '64, '67; Rosner '67; Levine, Roskies '74; Levine, Remiddi, Roskies '79)
Denote by K unit vector of four-momentum vector K in Euclidean space

Propagators in Euclidean space:

1 ad PN
= Z Ca(K-L
(K—LP + M2 \KHL\ Z( k) )

ZM _ K2 + 12 + M2 — \/(KQ + 12 + M2)2 —4K2|2

S 2|K|IL]
Use orthogonality conditions of Gegenbauer polynomials:
. ” a Y. S A 4
/dQ(K) Gl @ K) Cul(R- Q) = 272 2" (& - Q)

/dfz(k) Co(Q-R)Cn(R-B) = 272 5um

Q1 - K = Cosine of angle between the four-dimensional vectors Q; and K



LbL;7°

General form factors: 3-dim. integral representation for a; (continued)

Average over direction P (note: P2 = fmﬁ,):

()= 5y [Py

After reducing numerators in the functions T; in a};bL?’To against denominators of propagators,
one is left with the following integrals, denoting propagators by (4) = (P + @) + mi,
5)=(P—-@)*+ mi:

(w5 - ﬁarctan(li)
<(P.ol)%> = —(01-02)%
w Qz)(4>> - (QI'QZ)%

<(4)> = f%
@ =

Q- Q=Q1Qcosf, t=cosh (0= anglebetween Q; and @), Q; =|Q;]
Rmi=/1+4m2/Q?, x=VI—1, Rop=QQx z=2% 2 (1= Ron) (1= Ro2)



. . . .0 .
General form factors: 3-dim. integral representation for a:?™ (continued)
Integral representation for general off-shell form factors (Jegerlehner, Nyffeler '09):

o 2 3 [eS) +1
B - _%/ dqldQQ/ dtv/1-t2Q} @3
0 —1
.7'—7‘.0* * *(*0277(’?27702) ‘7:770* * (7Q277Q270)
« vy 2 1 > 3 > ] 2 2 h(Q1, Q2, t)
(@3 4+ m2)

Froemyens (—Q3, —Q2, —Q3) Frowe (—Q3, Q3,0
I B 1(Quf)mz)Oq _— )/2(017Q27t)
3 ™

where Q2 = (Q1 + @)%, Q1 Q= QiQcos0, t=cosf

h(Q1, Q. 8) = X(Qq, @2, ) (8P1 Py (Q1 - @) — 2P P3(Q3/m2, —2Q3) — 2Py (2 — Q3 /m2, +2(Qy - @) /m?,)

4Py P3 Q7 — 4Py —2P3 (4 + Q%/mi — 2Q§/mi) +2/mi)
—2Py Py (14 (1= Rypg) (@1 - Q) /m2) + Py P3 (2 — (1 — Rep1) @3 /m2,) + P (L — Ryp1) /17,
Py P32+ (1 — Rpp)? (@) - Qz)/mi) +3P3(1— le)/’"i
h(Q, @, t) = X(Q, @2, t) (4P1 Py(Qq- @) +2P P3QF — 2P +2PyP3Q} — 2Py — 4P3 — 4/mi)
—2P Py =3Py (1 = Rop)/(2m7,) = 3Py (1 — Ro)/(22,) = P3 (2 — Repy — Rmp)/(207,)
+PLP3 (24 3(1 = Rop) @3 /(2m2) + (1 — Ro)? (Q1 - Q2) /(2m2,)
+Py P32+ 3(1 = Rpy) QF /(2m2) + (1 = Rp1)® (@1 - @) /(202,)

where P2 = 1/Q7, P2 =1/Q3,P3 =1/Q3, X(Q1, Q. ) =

Q (}?2 X arctan ( lint)

Idea taken up by Dorokhov et al. '12 (for scalars) and Bijnens, Zahiri-Abyaneh '12-14 (for all
contributions; results presented by Bijnens at MITP Workshop last week). See also: Talk by
Jegerlehner at MITP Workshop and at this meeting (for scalars, axial vectors) and Pauk,
Vanderhaeghen '14 (2D plot of integrand for axial vector pole contribution).



Impact of form factor measurements: example KLOE-2

On the possibility to measure the 7% — v decay width and the v*y — 70 transition form

factor with the KLOE-2 experiment

D. Babusci et al. '12 H. Czyz, F. Gonnella, S. Ivashyn, M. Mascolo, R. Messi, D. Moricciani,
A. Nyffeler, G. Venanzoni and the KLOE-2 Collaboration '12
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Q[GeV)
Simulation of KLOE-2 measurement of F(Q?) (red
triangles). MC program EKHARA 2.0 (Czyz, lvashyn
'11) and detailed detector simulation.

Solid line: F(0) given by chiral anomaly (WZW).
Dashed line: form factor according to on-shell LMD+V
model (Knecht, Nyffeler '01).

CELLO (black crosses) and CLEO (blue stars) data at
higher Q2.

Within 1 year of data taking,
collecting 5 fb~1, KLOE-2 will be
able to measure:

e o to 1% statistical

-

precision.

e ~*y — 70 transition form factor
F(Q2) in the region of very low,
space-like momenta
0.01 GeV? < @2 < 0.1 GeV?
with a statistical precision of
less than 6% in each bin.
KLOE-2 can (almost) directly
measure slope of form factor at
origin (note: logarithmic scale in
Q%2 in plot n.



Impact of form factor measurements: example KLOE-2 (continued)

LbL;x°

e Error in ay; normalization of

related to model parameters determined by Fwo_w,y (

form factor; not taken into account in most papers) and F(Q?) will be reduced as follows:

. 5a{;bL?"o ~ 4 x 1071 (with current data for F(Q?) + FPD_GVW)

LbL;x% —11 PrimEx
o ba; ~2x 1071 (4 rEpimEx

o 6alPLim’ & (0.7 — 1.1) x 101 (+ KLOE-2 data)
e Note that this error does not account for other potential uncertainties in a%bL w0
related to choice of model, 2nd off-shell photon, off-shellness of pion.

, e.g.

e Simple models with few parameters, like VMD (two parameters: Fr, My), which are
completely determined by the data on I' o and F(Q@?), can lead to very small errors

LbL;7°
n

-7y
. For illustration:

BT = (57.3+£1.1) x 1071

;LLbLLMWD+V = (72 £12) x 10~ (off-shell LMD+V form factor, including all errors)

e But this might be misleading ! VMD and LMD-+V give equally good fits to transition
form factor F(Q?), but differ in doubly-off shell transition form factor FrOnyn (a2, q3).
Results for a;;“'*‘u differ by about 20% ! Reason: VMD form factor has wrong
high-energy behavior = too strong damping in af: VD' }—Trov*v* (9%, ¢%) ~ 1/qg*, for

large g2, i.e. falls off too fast compared to OPE prediction ]-'OOF;IE (%, 9%) ~1/q?

which is fulfilled by LMD+V = Dispersive approach to not rely (or less) on models.



The VMD form factor

Vector Meson Dominance:

Nc M3 M3

VMD 2 2 oy
fﬂ'o*’Y*'Y* ((Ch + q2) , 41, q2) - 1271—2F7r q% — M%/ qg — M\2/

on-shell = off-shell form factor !

Only two model parameters even for off-shell form factor: Fr and My
Note:
e VMD form factor factorizes f%l\fa*(qf, @) = f(q?) x f(g3). This might be a
too simplifying assumption / representation.
e VMD form factor has wrong short-distance behavior: f%%?v*(q{ q°) ~1/q", for

large g2, falls off too fast compared to OPE prediction FOX% (g%, ¢%) ~ 1/¢%

7Oy * %

Transition form factor:

VMD [ A2y _ Nc M@
FQ) = —50E, Q+ M2



One-particle intermediate states: resonance exchanges / poles

Note
e Within phenomenological approach with models, one particle exchanges / poles
come from pseudoscalars, scalars, axial vectors and tensor mesons.

o Within dispersion relation approach only “stable” physical intermediate states are
considered: one-pion, two-pion, three-pion, photons, muons . ..



Large-N¢ QCD approach: Minimal Hadronic Ansatz (MHA)

Moussallam, Stern '94; Moussallam '95, '97; Peris et al. '98; Knecht et al. '99; ...

In QCD, in leading order in N¢, in each channel of a Green's function an infinite tower of
narrow resonances contributes = only poles, no cuts (meromorphic functions).

The low-energy and behavior of these Green's functions is then matched
with results from QCD, using ChPT and the , respectively. Interpolation works best
for order parameters (Green's functions, LEC's) and integrals over Green'’s functions in
Euclidean space. Not suited to describe shape of resonances in physical region.

It is assumed that gives a good
description of the Green's function in the real world (generalization of VMD).

: 2-point function (VV) — spectral function Imly ~ o(eTe™ — hadrons)
Real world (Davier et al., '03) Large-N¢ QCD ('t Hooft '74)
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The LMD and LMD+V form factors
Knecht, Nyffeler, EPJC '01; Nyffeler '09

e Ansatz for (VVP) and thus F o:.«. in large-Nc QCD in chiral limit with 1
multiplet of lightest pseudoscalars (Goldstone bosons) and 2 multiplets of vector
resonances, p,p’ (lowest meson dominance (LMD) + V)

o Frowye o fulfills all leading (and some subleading) QCD short-distance constraint
from OPE

* Reproduces Brodsky-Lepage (BL): lim Froe e (M, —Q%,0) ~ 1/Q?
Qe—o0
(OPE and BL cannot be fulfilled simultaneously with only one vector resonance, LMD)

e Normalized to decay width I'.0_, .,

LMD form factors (off-shell, on-shell, transition form factor):
Fr i+ +q —cv

FRP (@ a i) = ., G=(m+ @)
7 3 (@~ M) (& — M)

Fx qi+qg — v

3 (qf — M7) (a3 — M7)’
_ FTF Q2+EV

3MZ Q2+ M2,

LMD 2 2 _ 2
fwo,y*,y*(ql, qz) Cy =Cvy —m,

FLMD ( Q2) _

Note that the LMD transition form factor does not fall off like 1/Q? for large Q.



The LMD+V form factor
Off-shell LMD+V form factor:

G a9+ @+ a)+ Py(ai, a3, 45)
(ai — M3,) (a7 — MP,) (a5 — M3,) (a3 — MP,)
hi(qi + @2)* + b2 G5 6 + hs (af + 63) @3 + ha G5
+hs (g + 43) + he @5 + hr
G = (@+aq)
Fr =924 MeV, My, = M, =775.49 MeV, My, = M, = 1.465 GeV, Free parameters: h;

L1V[D+V( 2 2 _

2 FTr
B Q37Q17Q2) = ?

PY(ai, 45, q3) =

On-shell LMD+V form factor:
FIMDIV(2 2y Fx GB(R+a)+ (e +a3) +hdiqs+hs(qt+a5)+h
’ 3 (67 — My,) (a7 — My,) (a5 — MY,) (g5 — MY,)

o
h7 = hy + hem2 + hami

h = h2+m3r, /_15:h5—|—h3m3r,

Transition form factor:

FLMD+V(Q2) _ E 1 hi@* — hs@Q* + hy
3 Mg, Mg, (Q2+ M7, )(Q2 + MP,)
e h; = 0 in order to reproduce Brodsky-Lepage behavior.
e Can treat h; as free parameter to fit the BABAR data, but the form factor does
then not vanish for Q? — oo, if h; # 0.



Fixing the LMD+V model parameters h;

hi, ho, hs. hy are quite well known:
e h; =0 GeV?  (Brodsky-Lepage behavior .7-'LMDV+V( ,—Q%,0) ~ 1/Q?)
e hy = —10.63 GeV?>  (Melnikov, Vainshtein '04: Higher twist corrections in OPE)
e hy =6.934+0.26 GeV* — h3m?  (fit to CLEO data of fﬁj’fj"(m;, —Q2,0))

* hy = —NcMy, My, /(47°FZ) — hemZ — hamy,
= —14.83 GeV6 — hgm?2 — hgm%  (or normalization to I'(7® — 7))

Fit to BABAR data: h; = (—0.17 £ 0.02) GeV?, hs = (6.51 £ 0.20) GeV* — hym2 with

2 _ _ LbyL;x° .
x*/dof = 15.0/15 = 1.0. Result for a ;' P\;7) \; not affected (shifts compensate).

hs, hs, hs are unknown / less constrained:
e New short-distance constraint = hy + h3 + hy = /\421/\/722 X (%)
x = quark condensate magnetic susceptibility of QCD (loffe, Smilga '84).

LMD ansatz for (VT) = x"MP = —2/M2 = —3.3 GeV~2 (Balitsky, Yung '83)
Close to x(=1 GeV) = —(3.15 £ 0.30) GeV~? (Ball et al. '03)

Assume large-N¢ (LMD/LMD+V) framework is self-consistent

= x=—(3.3+1.1) GeV 2

= vary h3 = (0 %+ 10) GeV? and determine hy from relation (*) and vice versa

Lattice QCD: x\S(u = 2 GeV) = —(2.08 + 0.08) GeV 2 (Bali et al. '12).

LbyL;n? . L.
e Final result for a,; Y is very sensitive to hg

Assume that LMD/LMD+V estimates of low-energy constants from chiral Lagrangian of
odd intrinsic parity at O(p®) are self-consistent. Assume 100% error on estimate for the
relevant, presumably small low-energy constant = hg = (5 +5) GeV*



Limitations of MHA approach

e Cannot fulfill all short-distance constraints on Green's functions (or form factors)
with finite number of resonances (Bijnens et al. '03) = needs to choose among
constraints and make compromises.

e Beyond LMD: many parameters in ansatz, not all of them can be fixed from
experimental or short-distance constraints.

e Most of the work done in chiral limit, assuming octet symmetry.

o Difficult to treat terms subleading in N¢: width of resonances, loops with
resonances (pion loop in HLbL).



Generalization: Resonance Chiral Theory (RxT)

o Gasser, Leutwyler, '84; Donoghue et al. '89; Ecker et al. NPB '89: use of resonance
Lagrangian with vector mesons, axial vector mesons, heavy scalars (f(980)) and heavy
pseudoscalars to estimate low-energy constants (LEC) in ChPT at order p* when
integrating out the resonances at tree level (explains success of vector meson dominance).

e Ecker et al. PLB '89: Imposing short-distance constraints on resonance Lagrangian leads
to unique estimates for LEC’s at order p*, at least for vector mesons in different
representations (vector field, tensor field, gauged vector fields, massive vector fields).
Note: Imposing short-distance constraints on resonance Lagrangian does not uniquely
determine LEC’s at order p® (Moussallam, Stern '94; Knecht, Nyffeler '01).

e Advantage of resonance Lagrangian: can easily identify in which Green's functions
(processes) the parameters in Lagrangian enter.
Problem: in general many terms in Lagrangian allowed by chiral symmetry, not all can be
determined from short-distance constraints.

e RxT Lagrangian for odd intrinsic parity sector which fulfills various QCD short-distance
constraints to fix parameters in the Lagrangian: Pallante, Petronzio '93; Prades '94;
Ananthanarayan, Moussallam '02; Ruiz-Femenia, Pich, Portoles '03; Kampf, Moussallam
'09; Kampf, Novotny '11; Roig, Sanz Cillero '13.

RxT with two vector resonances: Mateu, Portoles '07; Czyz et al. '12.

e Attempts to go beyond leading order in N¢: Loops with resonances, including
renormalization (Pich et al.).



Pseudoscalar pole / exchange in large-N¢c QCD

Model for ]:P(*)'Y*’Y*

au(m0) x 10t

au (70, m, ') x 101

VMD

LMD (on-shell) [KN]

LMD+V (on-shell, hy = 0) [KN]

LMD-+V (on-shell, h, = —10 GeV?) [KN]
LMD+V (on-shell, constant 2nd FF) [MV]
LMD+V (off-shell) [N]

LMD+P (off-shell) [KaNo]

LMD+P (off-shell) [RGL]

LMD+P (on-shell) [RGL]

57
73
58(10)
63(10)
77(7)
72(12)
65.8(1.2)
66.5(1.9)
57.5(0.5)

83
83(12)
88(12)

114(10)
99(16)
104.3(5.2)
82.7(2.8)

KN = Knecht, Nyffeler '02

MV = Melnikov, Vainshtein '04

N = Nyffeler '09

KaNo = Kampf, Novotny '11 (RxT)

RGL = Roig, Guevara, Lopez Castro '14 (RxT)

Note: KN, MV, N use VMD FF for n,n’




Other recent partial evaluations (mostly pseudoscalars)

e Nonlocal chiral quark model (off-shell) [Dorokhov et al.]

2008: a5 = 65(2) x 1011

2011: a7 = 50.1(3.7) x 10711, aLPYUPS — 5g.5(8.7) x 1011

2012: ALY Z54.0(3.3) x 1011, ALPYEAHD L1 5 101

a PSS — 625(8.3) x 1071

Strong damping for off-shell form factors. Positive and small contribution from scalar

o(600), differs from other estimates (BPP '96, '02; Blokland, Czarnecki, Melnikov '02).
e Holographic (AdS/QCD) model 1 (off-shell 7) [Hong, Kim '09]

AT — 69 x 1071, QYIRS = 107 x 10-11

e Holographic (AdS/QCD) model 2 (off-shell) [Cappiello, Cata, D’Ambrosio "10]
LbyL;x® —11
Em = 65.4(2.5) x 10
Used AdS/QCD to fix parameters in ansatz by D’Ambrosio et al. '98.
e Padé approximants (on-shell, no constant FF at external vertex)
.0
aYH ™ = 54(5) x 1071 [Masjuan '12 (using on-shell LMD+V FF)]
0 .
anh™ — 64.9(5.6) x 1071, ahPYLPS — 89(7) x 10-12

[Escribano, Masjuan, Sanchez-Puertas '13]
Fix parameters in Padé approximants from data on transition form factors.



More on single-resonance poles and exchanges
e Pauk, Vanderhaeghen '14:
a,,(f0(980), f3, a0) [(—0.9£0.2) to (—3.1£0.8)] x 10~
au(fi, f) (6.4 +£2.0) x 10711
au(fa,f,a2,a5) = (1.1+0.1)x10"1

Meson pole approximation. Using monopole form factor (VMD) for scalars and dipole
form factors (strong damping !) for axial vectors and tensors:

mon 2 2
Foty s~ (a1 a3) _ 1 1
Fpgy* % (0,0) (1= a2 /Nhon) 0 — B3 /N2000)
dip 2 2

F ity o+ (91 03) _ 1 1
Fayxy+(0,0) (1= 67 /AZ;, )2 (1= a3 /A )2

First calculation of tensor meson contribution to HLbL. For the tensor mesons, forward
sum rules for v scattering (Pascalutsa, Vanderhaeghen, '10; Pascalutsa, Pauk,
Vanderhaeghen '12) used to constrain the model. Sum rules link transition form factors
of pseudoscalars, axial vectors and tensor mesons = Agjp, = 1.5 GeV.

e Jegerlehner (Talk at MITP Workshop; Opening talk at this meeting):
a,,(f0(980), f3, a0) (—(6.01 — 6.31) £ 1.20) x 10~
au(fi,fl,a1) = (7.55—7.58)+£2.71)x 10!

Meson exchange contributions. Models inspired from Melnikov, Vainshtein '04, but
correctly implement Landau-Yang theorem.

e Both calculations give contribution for axial vectors, which is substantially smaller than
Melnikov, Vainshtein '04: a,(f1,f/,a1) = (22 +5) x 10711,



Two-particle intermediate states (pion-loop)



Dressed pion-loop
1. ENJL/VMD versus HLS

Model aZﬁIOOP x 1011
scalar QED (no FF) _45 Strong damping if form factors are introduced,
HLS 45 very model dependent: compare ENJL (BPP
’ '96) versus HLS (HKS '96). See also
ENJL -19 discussion in Melnikov, Vainshtein '04.
full VMD -15

Origin: different behavior of integrands in contribution to g — 2 (Zahiri Abyaneh '12; Bijnens,
Zahiri Abyaneh '12; Talks by Bijnens at MesonNet 2013, Prague; MITP Workshop last week)

One can do 5 of the 8 integrations in the 2-loop integral for g — 2 analytically, using the hyperspherical
approach / Gegenbauer polynomials (Jegerlehner, Nyffeler '09; taken up in Bijnens, Zahiri Abyaneh '12):

X XLL XLL :
a, = /dlpldlp2 a, = /dlpldlp2dIQ 2, Q, with /p = In(P/GeV)

Contribution of type X at given scale Py, Py, Q is directly proportional to volume under surface when

a‘)fLL and al)fLLQ are plotted versus the energies on a logarithmic scale.

Momentum distribution of the full VMD and
HLS pion-loop contribution for P; = P;.

HLS: Integrand changes from positive to
negative at high momenta. Leads to
cancellation and therefore smaller absolute
value. Usual HLS model (a = 2) known to not
fullfill certain QCD short-distance constraints.

P =P,




Dressed pion-loop (continued)

2. Role of pion polarizability and a; resonance

e Engel, Patel, Ramsey-Musolf '12: ChPT analysis of LbyL up to order p® in limit
p1, P2, q <K my. ldentified potentially large contributions from pion polarizability
(Lo + Lig in ChPT) which are not fully reproduced in ENJL / HLS models used by BPP
'96 and HKS '96. Pure ChPT approach is not predictive. Loops not finite, would need
new a, counterterm (Knecht et al. '02).

e Engel, Ph.D. Thesis '13; Engel, Ramsey-Musolf '13: tried to include a; resonance
explicitly in EFT. Problem: contribution to g — 2 in general not finite (loops with
resonances) = Form factor approach with a; that reproduces pion polarizability at low
energies, has correct QCD scaling at high energies and generates a finite result in aj,:

2 1 —I
L = _iFHﬂrﬂ- s F*7r~ 4+ hee. +--- aZ O0P 1011
4 , D*+ /I\\///,? , Model | (a) | (b)
Ly = 76727#7.-* V) PRl g I -11 | -34
2M3 0% + My, I -40 | -71

Second and third columns in Table correspond to different values for the polarizability
LECs, (af + alp): (2) (1.32£1.4) x 1073 (from radiative pion decay 7t — e*ve7y ) and
(b) (3.1 £0.9) x 10~3 (from radiative pion photoproduction yp — /7t n).

Potentially large results (absolute value): a;—loop ~ —(11 — 71) x 10~ Variation of
60 x 10~ | Uncertainty underestimated in earlier calculations ?



Dressed pion-loop (continued)

o Issue taken up in Zahiri Abyaneh '12; Bijnens, Zahiri Abyaneh '12; Bijnens,
Relefors (to be published); Talk by Bijnens at MITP Workshop.

Tried various ways to include a;, but again no finite result for g — 2 achieved.
With a cutoff of 1 GeV:

a7 9% _ (L2045)%x 107" (preliminary)

Very close to old result a7~ '°%P — (~19 + 13) x 10" in BPP '96, '02.

e Maybe only model-independent approach with dispersion relations can give a
reliable prediction for pion-loop. But to include the effects of the axial vector
meson a; and the matching with QCD short-distances, the region 1 — 2 GeV
should be covered as well.



Dressed quark-loop



Dressed quark-loop

Dyson-Schwinger equation (DSE) approach [Fischer, Goecke, Williams '11, '13]

Claim: no double-counting between quark-loop and pseudoscalar exchanges (or exchanges of
other resonances)

Had. LbyL in Effective Field Theory (hadronic) picture:

Quarks here may have different interpretation than below !
Had. LbyL using functional methods (all propagators and vertices fully dressed):

~ q + + -
Expansion of quark-loop in terms of planar Pole representation of ladder-exchange
diagrams (rainbow-ladder approx.): contribution:
2 = , o
.y - 2 M3 e |
?Vq L %@ 4 %{9‘ ) @E P Mps L
;Ya\/’iLL o !

Truncate DSE using well tested model for dressed quark-gluon vertex (Maris, Tandy '99).

Large contribution from quark-loop (even after recent correction), in contrast to all other
approaches, where coupling of (constituent) quarks to photons is dressed by form factors
(p — y-mixing, VMD).



Dressed quark-loop (continued)
e Dyson-Schwinger equation approach [Fischer, Goecke, Williams '11, '13]

.0
aYH ™ = 57.5(6.9) x 1071 (off-shell),  aL™“FS = 81(2) x 10-1
LbVL auark=loor — 107(2) x 1011, 4% MM = 188(4) x 1011

Error for PS, quark-loop and total only from numerics. Quark-loop: some parts are

missing. Not yet all contributions to HLbL calculated. Systematic error ?
Note: numerical error in quark-loop in earlier paper (GFW PRD83 '11):
apbyLiauark—loop _ y36(50) 5 10~ 11, ghad- LByl 517101y x 10-11

e Constituent quark loop [Boughezal, Melnikov '11]

apd Loyl — (118 — 148) x 1011

Consider ratio of had. VP and had. LbyL with pQCD corrections. Paper was reaction to
earlier results using DSE yielding large values for the quark-loop and the total.
® Constituent Chiral Quark Model [Greynat de Rafael '12]
LbyL CQloop __ 82(6) % 10— 11

,EbyL ™ _ 68(3) x 1011 (off-shell)

had LbyL _ 150(3) % 10—11 " N

Error only reflects variation of constituent quark mass Mg = 240 4= 10 MeV, fixed to
reproduce had. VP in g — 2. Determinations from other quantities give larger value for
Mg ~ 300 MeV and thus smaller value for quark-loop. 20%-30% systematic error
estimated. Not yet all contributions calculated.

e Padé approximants [Masjuan, Vanderhaeghen '12]
aprd- Byl — (76(4) — 125(7)) x 1011
Quark loop with running mass M(Q) ~ (180 — 220) MeV, where the average momentum
(Q) ~ (300 — 400) MeV is fixed from relevant momenta in 2-dim. integral representation
for pion-pole in Knecht, Nyffeler '02.



Current status of HLbL, Outlook, Conclusions



HLbL @ NLO
Golangelo, Hoferichter, Nyffeler, Passera, Stoffer '14

Recently, a surprisingly large NNLO HVP
contribution was obtained by Kurz et al. '14.

AlVP L0 = (6907.5 + 47.2) x 1071
afVPNLO = (—1003£22)x 107
aVPNNLO (124 4+ 0.1) x 10~

0
Enhancement because of large In(m, /me),
prefactors 2 in QED LbL.

Could there be a similarly large effect in HLbL @ NLO ? We calculated
the potentially large contribution from an additional electron loop
(using simple VMD model for pion-pole to model full HLbL)

0
a:lr -pole, NLO —-15. 10711
, very close to renormalization
group arguments 3 X £ x £ Iog Ie ~2.5%.
Estimating the not yet calculated dlagrams with HLbL with additional radiative corrections to

the muon line or internal HLbL by comparing with HLbL insertions with muon loop in ,
which are suppressed by factor 4, we obtain the estimate:

i—beL NLO (3ﬂ:2) 107117



HLbL scattering: anno 2014

e Recent partial evaluations:
LbyL;x°
au

~ (50-69) x 107"
aytts (59 — 107) x 1071

Most evaluations agree at level of 15%, but some estimates are quite low or high.
o New estimates for axial vectors: aj;”"**l ~ (6 —8) x 10~
(Pauk, Vanderhaeghen '14; Jegerlehner '14)
o First estimate for tensor mesons: aj; """ = (1.1 4+0.1) x 10"
(Pauk, Vanderhaeghen '14)
e Open problem: Dressed pion-loop
Potentially important effect from pion polarizability and a; resonance
(Engel, Patel, Ramsey-Musolf '12; Engel '13; Engel, Ramsey-Musolf '13):
apbmTloor — (11 —71) x 1071
Large negative contribution, no damping seen, in contrast to BPP '96, HKS '96.
Hopefully can help to settle the issue beyond the use of
models (Colangelo et al. '14; Pauk, Vanderhaeghen '14).
e Open problem: Dressed quark-loop
Dyson-Schwinger equation (DSE) approach (Fischer, Goecke, Williams '11, '13):

aﬁb_yL;quark—lonp — 107 % 10—11 ( )

Large contribution, no damping seen, in contrast to BPP '96, HKS '96.



HLbL scattering: anno 2014 (continued)

o If we take those newer estimates of the pion-loop and quark-loop seriously and
combine the extreme estimates:

a " = (64 —202) x 107"
o a," = (133£69) x 107"

= We do not understand HLbL scattering at all !?

e Option 1: Wait for final result from Lattice QCD ...
One idea: put QCD + QED on the lattice !
Blum et al. '05, '08, '09; Chowdhury '09; Blum, Hayakawa, lzubuchi '12 + poster
at Lattice 2013 (private communication by Blum):

F2(0.18 GeV?) = (1274+29)x 10° " (result 4.40 from zero)
F2(0.11 GeV®) = (—15+39) x 10"  (result consistent with zero)
aELbL;mOdds =F(0) = (116+40)x 10" (Jegerlehner, Nyffeler '09)

For m, =190 MeV, m, = 329 MeV. Still large statistical errors, systematic
errors not yet under control, still quenched QED, potentially large “disconnected”
contributions missing | Status report in last week's MITP workshop by lzubuchi.



HLbL on the lattice

Non-perturbative approach: QCD+QED on the lattice

Attach one photon by hand
Correlation of hadronic loop

and muon line
F’ P [Hayakawa, et al. hep-lat/0509016;
ap H# Chowdhury et al. (2008);
)

Chowdhury Ph. D. thesis (2009)]

(Poster by Blum at Lattice 2013)



HLbL on the lattice (continued)
Formally expand in «

The leading and next-to-leading contributions in o to magnetic
part of correlation function come from

£

s
« Bad! &

+ L

3

e« Good! &
+ +

(Poster by Blum at Lattice 2013)



HLbL on the lattice (continued)

Subtraction of lowest order piece

QCD+QED
B <®>QCD =
(e
_ + o)

(Poster by Blum at Lattice 2013)

Subtraction term is product of
separate averages of the loop
and line

Gauge configurations identical
in both, so two are highly cor-
related

In PT, correlation function and
subtraction have same contri-
butions except the light-by-
light term which is absent in the
subtraction



Conclusions and Outlook

Option 2: Maybe non-Lattice theorists and experimentalists can still do some work in the
coming years, as far as HLbL scattering in muon g — 2 is concerned !

e Despite recent developments concerning the pion-loop and quark-loop, we think that the
estimate

aszL = (116 = 40) x 10~ 1 (Nyffeler '09; Jegerlehner, Nyffeler '09)

still gives a fair description of the current situation.

e Only a (models, dispersion relations,
Schwinger-Dyson equations, Lattice QCD) will
lead to a reliable error estimate of

dali®t =20 x 1071

as proposed in the MITP Workshop to match in a few years precision of new muon g — 2
experiments daj," *® = 16 x 1011,

e Error estimates for individual contributions: a small error does not necessarily imply that
the estimate is “better’, maybe the model used is too simple !
Small error of 426 x 101 in Prades, de Rafael, Vainshtein '09 (“Glasgow consensus”)
from adding errors of individual contributions in quadrature might be misleading.

e Do we all agree on the definition of the pion-pole contribution ?
On-shell-pion form factor:
fﬂo,yw(mfr, (g1 + g2)?,0) for (q1 + g2)? # m>. How to recover the non-pole
contributions 7



Conclusions and Outlook (continued)

e Needed: more experimental constraints from resonance decays, form factors,
cross-sections, at small and intermediate momenta |g| < 2 GeV (time-like and space-like).
In addition to many processes mentioned at this workshop, have a look at:

- Need more information on pion-polarizability, e.g. from radiative pion decay
m+t — etwey, radiative pion photoproduction yp — ~/7* n, the hadronic Primakoff
process A — 7'A (with some heavy nucleus A) or YA — nn~A.

- Properties of the a; resonance should be better determined, e.g. its decay modes
a3 — pm and a; — 7y. Important for pion-loop and axial-vector exchange
contribution.

e Need more theoretical constraints on form factors and (VVVV) at low energies from
ChPT and short-distance constraints from OPE and pQCD. More short-distance
constraints will also be useful for other approaches using resonances Lagrangians or
dispersion relations.

Short-distance analysis of full 4-point (VVVV) (Knecht, Nyffeler, work in progress).
Also useful to constrain models: sum rules for the (on-shell) hadronic light-by-light
scattering (Pascalutsa, Pauk, Vanderhaeghen '12)

e Study relevant momentum regions in HLbL (as model independent as possible) (Knecht,
Nyffeler, work in progress).

o Note: only Bijnens, Pallante, Prades '96, '02 and Hayakawa, Kinoshita, Sanda '96, '98,
'02 are “full” calculations so far | But the models used have their deficiencies.
Dispersive approach can help to make some progress, but how far can we go ?

Helpful: one consistent (as much as possible) hadronic (resonance) model to calculate all
contributions ! Along the lines of HLS model (Benayoun et al.) or Resonance Chiral
Theory which fit as much as possible data in resonance region and fulfill as much as
possible QCD short-distance constraints.



Backup



Experimental constraints on (on-shell) F o .«

o Any hadronic model of the form factor has to reproduce the 70 — ~~ decay amplitude

A(r® — yy) = [1+ O (mg)]

e’ N¢
127 2F .
Fixed by the Wess-Zumino-Witten (WZW) term (chiral corrections small), see also Kampf,
Moussallam '09. Leads to normalization:

F 0,y (m3,0,0) = —

N¢
1272 F,
For F = 92.4 MeV, this reproduces very well the decay width (7% — ~v) = (7.74 4 0.49) eV

(PDG 2010, 6.3% precision). More recently the PrimEx Collaboration (Larin et al. '11)
presented the measurement I'(7% — ~vv) = (7.82 & 0.23) eV (2.8% precision).

Note: Uncertainty in neutral pion contribution to HLbL originating from (7% — ~v) has not
been taken into account in most evaluations ! Fr is used without any error attached to it.

o Information on the 70 — + transition form factor with one on-shell and one off-shell photon
from the process ete™ — ete n0
Brodsky-Lepage '79-'81 predict the following behavior:

2Fx
QA Fromy(mi, =Q0) ~ =7

Maybe with slightly different prefactor !

Data from CELLO '90 and CLEO '08 fairly well confirm this behavior, although QR?*<9 GeV?
maybe not yet large enough. Data from BABAR '09 in range 4 GeV? < Q2 < 40 GeV? do not
show this fall-off. But data from BELLE '12 in same range seem to fall off.



Theory: QCD short-distance constraints from OPE on F o«

Knecht, Nyffeler, EPJC '01 studied QCD Green’s function (VVP) (
) in chiral limit and assuming octet symmetry (partly based on Moussallam
'95; Knecht et al. '99)

e When the space-time arguments of all three currents approach each other one obtains with
the Operator Product Expansion (OPE), up to corrections O (as):

1
. 2 2 2y _
i Froeyere (O +0a2, Oa), () = 35 2 o ()

e When the space-time arguments of the two vector currents in (VVP) approach each other
the OPE leads to Green's function (AP) and one obtains:

2Fp 1 1 1
. 2 2 2y _ <o
A'Lmoo]:wo*v*w*(Q27 (Aq1)7, (g2 = Aaq1)?) = 3IRE +0 (F)

As pointed out in Melnikov, Vainshtein '04, have been worked out in
Shuryak, Vainshtein '82, Novikov et al. '84 (in chiral limit):

2F 1 8 42 1
. 2 2y 0
Jim Py 0,00 ) = 52 {1 8 S o (56 |

82 parametrizes the relevant higher-twist matrix element.
The sum-rule estimate in Novikov et al. '84 yielded 62 = (0.2 + 0.02) GeV?



Short-distance constraint on form factor at external vertex

e When the space-time argument of one of the vector currents approaches the
argument of the pseudoscalar density in (VVP) one obtains (Knecht, Nyffeler, EPJC

'01):
(V.VP) — (VT) Vector-Tensor two-point function
<~
OPE

2
lim Froeyern (Mg + @)%, (Aq1)%, 3) = == ——Tvr(g5) + O ( )
Amee” T <w¢> A
The vector-tensor two-point function [y is defined by:
a ipex i
5P (Mv) oo (p) = /d4xe" (o|T{v; (x)(wam ¥)(O)HO),  ape = S [ve: 7]

(HVT);Lpo'(p) = (ppn,u,o' - ponup) nVT(pz), CVC, parity invariance

At the external vertex in light-by-light scattering the following limit is relevant (soft

p oto q2 0)
|| | .; 70 ,(()\ ]) ()\ ]) ,O)— IV (0)+O< )



Short-distance constraint at the external vertex (cont.)

loffe, Smilga '84 defined the quark condensate magnetic susceptibility x of QCD in the
presence of a constant external electromagnetic field

<0|‘_70—HVq|O>F = €& X <¥1/)>0 Fl“/a €u = 2/37 €d = 71/3
Belyaev, Kogan '84 then showed that

Myr(0) = — <¢;ﬁ>o

X
= Short-distance constraint on off-shell form factor at external vertex (Nyffeler '09):

Jim o (O 00t 0 = 10 (3) @
o Note that there is no falloff in OPE in (x), unless x vanishes !
A constituent quark model for the form factor would lead to a 1/g? fall-off.
e Corrections of O (as) in OPE = x depends on renormalization scale . Not
obvious, what is the “correct” scale p in HLbL.
e Unfortunately there is no agreement in the literature what the value of x(u)
should be !
Range of values from x (1 ~ 0.5 GeV) ~ —9 GeV~2 (loffe, Smilga '84; Vainshtein '03,
..., Narison '08) to x(u ~ 1 GeV) ~ —3 GeV 2 (Balitsky, Yung '83; Ball et al. '03; .. .;
loffe '09). Running with p cannot explain such a difference. Recent result from Lattice
QCD: XMS(1 = 2 GeV) = —(2.08 + 0.08) GeV~2 (Bali et al. '12).



Our estimate for pseudoscalar-exchange contribution
Nyffeler '09; Jegerlehner, Nyffeler '09

o 70

Estimate with off-shell form factor fLMD*t/\i which obeys new short-distance
constraint at external vertex:
LbyL; 0 —11
a, LMDV = =(72+12) x 10
.0
Largest uncertainty from hg — (5 +5) GeV* = +6.4 x 10" in aﬁ;bﬁ,l\%[g+v
If we would vary h5 — (0 + 10) Gev* = +12 x 10~ 111
Varying x = —(3.3+£1.1) GeV™2 = 4+2.1 x 10!
Value of x not so important, but range does not include Vainshtein's estimate x = —NC/(47r2F$\_) — —8.9 Gev—2
Varying h3 = (0 + 10) GeV? ;»(‘iz.s X 107 (hg via hy + hs = My, My, x)
With hy, hg from fit to BABAR data nf““'f,:‘)' v = 71.8 x 10711 — result unchanged !

Short-distance analysis of LMD+V form factor performed in chiral limit and
assuming octet symmetry = not valid anymore for 1) and 7/

Simplified approach: VMD normalized to decay width ['(PS — ~v).

Ne M3, M3,

MD 2 2 2
7";/5* *yx (03,01, 92) = — —— 3 53 5 PS =n,n’
127 FPS (q1 - MV) (q2 - MV)
LbyL; LbyL;n —
= a7 = 145% 1071 and 357 = 12.5x10 11
Not taking pole-approximation as done in Melnikov, Vainshtein '04 |
Note: VMD form factor has too strong damping at large momenta — values might be a bit too small !

e Estimate for sum of all light pseudoscalars:

aPYLPS = (99 +£16) x 1071



Relevant momentum regions in a,

Result for pseudoscalar exchange contribution a;

LbyL;PS

LhyLiPS o 1011 for
obtained with momentum cutoff A in 3-dimensional integral representation of

Jegerlehner, Nyffeler '09 (integration over square). In brackets, relative contribution of the

total

IR

obtained with A = 20 GeV.

A 0 n n’

[GeV] | LMD+V (h3=0)  LMD+V (hy=0) VMD VMD VMD

0.25 14.8 (20.6%) 14.8 (20.3%) 14.4 (25.2%) 1.76 (12.1%) 0.99 (7.9%)
0.5 38.6 (53.8%) 38.8 (53.2%) 36.6 (64.2%) 6.90 (47.5%) 4.52 (36.1%)
0.75 51.9 (72.2%) 52.2 (71.7%) 47.7 (83.8%) 10.7 (73.4%) 7.83 (62.5%)
1.0 58.7 (81.7%) 59.2 (81.4%) 52.6 (92.3%) 12.6 (86.6%) 9.90 (79.1%)
15 64.9 (90.2%) 65.6 (90.1%) 55.8 (97.8%) 14.0 (96.1%) 11.7 (93.2%)
2.0 67.5 (93.9%) 68.3 (93.8%) 56.5 (99.2%) 14.3 (98.6%) 12.2 (97.4%)
5.0 71.0 (98.8%) 71.9 (98.8%) 56.0 (99.0%) | 14.5(99.9%) | 12.5(99.9%)
20.0 71.9 (100%) 72.8 (100%) 57.0 (100%) | 145 (100%) | 12.5 (100%)

Although weight functions plotted earlier are not applicable to off-shell LMD+V form
factor, 1 82% for LMDV, 92% for
VMD.

No damping from off-shell LMD+V form factor at external vertex since x # 0 (new
short-distance constraint). Note: VMD falls off too fast, compared to OPE.

Mass of intermediate pseudoscalar is higher than pion mass — expect a stronger
suppression from propagator.
Peak of relevant weight functions shifted to higher values of Q;. For n’, vector meson

mass is also higher My = 859 MeV.
: 96% of total for 17, 93% for n’.



Minimal Hadronic Ansatz for (VV) and HVP contribution to g — 2
Adapted from de Rafael

Consider Adler function A(Q?%) = —Q@? 8”(,;/(?? )

4 1 1) , 2002 Q’ Ne 4 @
=(=+=+= 2fy M = 1+...
MHA <9+9+9>e { v V(Q2+M)2+167T23Q2—|—50( +oo)

Chiral loops (two-pion states) subleading in 1/Nc.

A(Q?)

No 1/6)2 term in the OPE = fixes sp: 2f\§l\/l2v = Ne iso 1+ §o¢s(so) +...
1672 3 8

General relation:

1 2
HP & % . X X 2
u _77/0 x(l X)(l 2)A<1—xm”)

= (5700 +1900) x 10~ (33% systematic error from 1/Nc)

HVP

u }MHA

Of course, this error for HVP cannot compete with evaluations based on data on
o(ete™ — hadrons) with £45 x 107!, Imposing further theoretical and experiment
constraints on the MHA for the relevant Green's functions can maybe bring down the
error to 10-15%. Would be almost enough for HLbL.



