Experiment: Status and Challenges

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

1. General

2. Hadronic Vacuum Polarization (HVP)

3. How real is the accuracy?

4. Hadronic LbL

5. Conclusions

Major achievements coming from:

- 1. Energy Frontier:
 - LHC and Higgs discovery
 - (before that) Tevatron studied t quark physics and QCD
 - LEP and Standard Model success
- 2. Intensity/Precision Frontier:
 - E821 a_{μ} ; a_e and α
 - ϕ and B factories R studies, CPV, exotic $c\bar{c}$ and $b\bar{b}$ states
 - Proton radius

Muon Anomalous Magnetic Moment

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad a = (g - 2)/2.$$

In Dirac theory for pointlike particles g = 2, higher-order effects or new physics $\Rightarrow g \neq 2$

Any significant difference of a_{μ}^{exp} from a_{μ}^{th} indicates New Physics beyond the Standard Model.

 a_{μ} is much more sensitive to new physics effects than a_e : the gain is usually $\sim (m_{\mu}/m_{\rm e})^2 \approx 4.3 \cdot 10^4$.

$$a_{\mu}^{\text{th}} = a_{\mu}^{\text{SM}} + a_{\mu}^{\text{NP}}, \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}}.$$

Experimental Status of a_l

 $a_e = 1159652180.73(28) \times 10^{-12} \quad 0.24 \times 10^{-9}$

D. Hanneke et al., PRL 100, 120801 (2008) QED test or α determination

 $a_{\mu} = 116592080(63) \times 10^{-11} \quad 0.54 \times 10^{-6}$

G.W. Bennett et al. (E821), PRD 73, 072003 (2006) Sensitive test of the Standard Model

 $a_{\tau} = -0.018(17)$ or $-0.052 < a_{\tau} < 0.013$ 95%CL

J. Abdallah et al. (DELPHI), EPJ C 35, 159 (2004) Theory: $117721(5) \times 10^{-8}$, SE, M. Passera, MPL A 22, 159 (2007)

Update of the Experimental Value of a_{μ}

E821 at BNL (2006): $a_{\mu^+}^{\exp} = (11659204 \pm 6 \pm 5) \times 10^{-10}$ $a_{\mu^-}^{\exp} = (11659215 \pm 8 \pm 3) \times 10^{-10}$

Their average assuming CPT and with account of correlations: $a_{\mu}^{\exp} = (11659208.9 \pm 5.3 \pm 3.3) \times 10^{-10}$

These values take into account the newest CODATA value for the μ/p magnetic ratio λ = 3.183345137 ± 85.
The induced change in a_μ is +0.92 × 10⁻¹⁰.
P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)

QED Contribution a_{μ}^{QED}

$$\begin{array}{rll} a^{\rm QED}_{\mu} \cdot 10^{10} = \Sigma C_i (\frac{\alpha}{\pi})^i = & 11614097.3 \ (1\text{-loop}) & 1 \ {\rm diagram} \\ & + & 41321.8 \ (2\text{-loop}) & 9 \\ & + & 3014.2 \ (3\text{-loop}) & > 100 \\ & + & 38.1 \ (4\text{-loop}) & > 1000 \\ & + & 0.4 \ (5\text{-loop}) & > 20000 \end{array}$$

 α^{3} terms known analytically (S. Laporta, E. Remiddi, 1993), α^{4} terms – numerically (T. Kinoshita et al., 2003-2008), L log α^{5} (TK et al., 2005,2007; A.L. Kataev, 2006, K. Chetyrkin et al., 2008): $a_{\mu}^{\text{QED}} = (116584719.4 \pm 1.4) \cdot 10^{-11}.$

From the latest value of a_e (D. Hanneke et al., 2008; T. Kinoshita, 2012): $\alpha^{-1} = 137.035999173(34), a_{\mu}^{\text{QED}} = (116584718.09 \pm 0.14 \pm 0.04) \cdot 10^{-11}.$ The errors are due to: a/ $\mathcal{O}(\alpha^5)$, b/ α Muon g - 2, Mainz

One-loop electroweak contributions

Authors	Year	$a_{\mu}^{\rm EW}, 10^{-10}$
••••,••••,••••	1972	19.5
A. Czarnecki et al.	1996	15.2 ± 0.4
A. Czarnecki et al.	2002	$15.4 \pm 0.1 \pm 0.2$

The errors are due to: a/ hadr. loops, b/ M_H, M_t , 3-loop effects.

 $\hat{K}(s)$ grows from 0.63 at $s = 4m_{\pi}^2$ to 1 at $s \to \infty$, $1/s^2$ emphasizes low energies, particularly $e^+e^- \to \pi^+\pi^-$. $a_{\mu}^{\text{had,LO}} \sim 700 \cdot 10^{-10} \Rightarrow \text{accuracy better than 1\% needed}$

The contributions of all 3 graphs can be calculated in terms of the $\int R(s)G(s)ds/s^{2(3)}$, where G(s) is a smooth function of s, so that the low energy range again dominates the integral. Several calculations agree. The recent value is (F. Jegerlehner and R. Szafron, 2011):

$$a_{\mu}^{\text{had,HO}} = (-9.98 \pm 0.10) \cdot 10^{-10}.$$

but may suffer from more complicated radiative effects,

a broad range of collision energies

Relation of Scan and ISR Center-of-mass Energy

If the nominal c.m. energy of the collider is \sqrt{s} and initial electron or positron emit a photon with energy E_{γ} , the effective c.m. energy of the collision is

$$\sqrt{s'} = \sqrt{s - 2E_\gamma \sqrt{s}}$$

\sqrt{s}, GeV	$\sqrt{s'}$, GeV	E_{γ}, GeV
$1.02 (m_{\phi})$	$0.770~(m_{ ho})$	0.22
$10.58~(m_{\Upsilon(4S)})$	$0.770~(m_{ ho})$	5.26
$10.58 \ (m_{\Upsilon(4S)})$	$3.1~(m_{J/\psi})$	4.84

How Is R Measured at Low Energy $(\sqrt{s} < 2 \text{ GeV})$?

- The cross section rapidly changes with energy because one is far from asymptotics and there are many resonances
- There is no good theoretical model to find ϵ
- Exclusive approach: specific final states studied separately $(\pi^+\pi^-, K^+K^-, K_SK_L, , n\pi, K\bar{K}m\pi, p\bar{p}, n\bar{n}, \ldots)$
- The cross sections measured summed
- Important not to miss some final states

R Measurement at Low Energies (< 5 GeV)

The main players in the field:

- Novosibirsk scan (CMD-2/SND at VEPP-2M, $0.36 < \sqrt{s} < 1.4$ GeV, CMD-3/SND at VEPP-2000, $2m_{\pi} < \sqrt{s} < 2.0$ GeV)
- Frascati ISR (KLOE/KLOE-2 at DAFNE, $2m_{\pi} < \sqrt{s} < 1.02 \text{ GeV}$)
- Beijing scan/ISR (BESII at $2.0 < \sqrt{s} < 5.0$ GeV, BESIII at $2m_{\pi} < \sqrt{s} < 4.6$ GeV)
- SLAC ISR (BaBar at PEPII, $2m_{\pi} < \sqrt{s} < 5$ GeV)
- KEK ISR (Belle at KEKB, $2m_{\pi} < \sqrt{s} < 5$ GeV, BelleII at SuperKEKB, $2m_{\pi} < \sqrt{s} < 5$ GeV)

Current Status of R Below 2 GeV – Scan

Syst. errors: (0.6-1.0)% for $\pi^+\pi^-$, (5-15)% for multibody states Cross sections vary by 4-5 orders!

Syst. errors: 0.5% for $\pi^+\pi^-$, (2-15)% for multibody states BaBar - all energies, Belle mainly in the charm region

Progress of Data-driven $a_{\mu}^{\text{had,LO}}$

Author	Date	$a_{\mu}^{\text{had,LO}}, \ 10^{-10}$
V. Barger	1975	663 ± 85
SE, FJ	1994	702 ± 15
M. Davier, SE, \ldots	2003	696.3 ± 7.2
FJ, A. Nyffeler	2009	690.6 ± 5.3
M. Davier et al.	2011	692.3 ± 4.2

Impressive progress due to the new data

How Is R Measured at High Energy $(2 < \sqrt{s} < 5 \text{ GeV})$?

- Inclusive approach: all multihadronic events selected
- Background determined (τ decays, $\gamma\gamma$, QED)
- $\int \mathcal{L}dt$ found
- ϵ found from MC (LUND, PYTHIA, LUARLW)
- Radiative corrections applied: ISR (PHOKHARA), FSR (PHOTOS)

Dominated by BES: stat. errors (3-5)%, syst. errors (5-8)% J.Z. Bai et al., Phys.Rev.Lett. 84 (2000) 594, Phys.Rev.Lett. 88 (2002) 101802; M. Ablikim et al., Phys.Rev.Lett. 97 (2006) 262001, Phys.Lett. B677 (2009) 239

CLEO-c: syst. errors (5.2-6.1)% D. Cronin-Hennessy et al., Phys. Rev. D80 (2009) 072001

S.Eidelman, BINP

p.20/61

CLEO3: syst. errors (1.7-2.3)% D. Besson et al., Phys. Rev. D76 (2007) 072008

S.Eidelman, BINP

p.21/61

R Measurement at KEDR from 3.1 to 3.7 GeV

2k events per point, aimed at 4% systematics With additional 2 pb⁻¹ in 2014 the total $\Delta R/R \sim 3\%$ can be achieved

R Measurements below 10 GeV

S.Eidelman, BINP

p.23/61

Light-by-Light Scattering – I

Various approaches used:

- Vector Dominance and Chiral models
- Data on $\gamma\gamma^* \to \pi^0, \eta, \eta'$ (single-tag)
- Effective field theory
- Dyson-Schwinger equations

M. Knecht and A. Nyffeler, 2002: the correct sign!

Light-by-Light Scattering – II

Authors	Year	$a_{\mu}^{\rm lbl}, 10^{-10}$
J. Bijnens et al.	1996~(2002)	8.3 ± 3.2
M. Hayakawa and T. Kinoshita	1998~(2002)	9.0 ± 1.5
K. Melnikov and A. Vainshtein	2003	13.6 ± 2.5
M. Davier and W. Marciano	2004	12.0 ± 3.5
J. Prades, E. de Rafael, and A. Vainshtein	2009	10.5 ± 2.6
D. Greynat and E. de Rafael	2012	15.0 ± 0.3
T. Goecke, C.S. Fischer and R. Williams	2013	18.8 ± 9.0

Experiment vs. Theory – I

$$a_{\mu} = (g_{\mu} - 2)/2, \ 10^{-10}$$
Experiment11659208.9 $\pm 5.4 \pm 3.3$ QED11658471.809 ± 0.015 EW15.4 $\pm 0.1 \pm 0.2$ Had LO692.3 ± 4.2 Had HO -9.8 ± 0.1 Had LbL10.5 ± 2.6 Theory11659180.2 ± 4.9 Exp.-Th. 28.7 ± 8.0

Experiment is higher than theory by 3.6 standard deviations

Experiment vs. Theory – II

How Real is a_{μ}^{had} Accuracy?

- Radiative corrections: ISR and HVP probably OK, FSR demands testing (charge asymmetry, $\pi^+\pi^-\gamma$)
- Scan vs. ISR method
- Missing states: neutrals, $\pi^+\pi^-n\pi^0$, $K\bar{K}n\pi$ isospin
- Correlations
- Averaging
- Light-by-light term
- Double counting (LO and HO)

Contribution of Various Energy Ranges

\sqrt{s}, GeV	$\Delta a_{\mu}^{\mathrm{had,LO}}$
$\pi^+\pi^-$	507.80 ± 2.84
$\pi^+\pi^-\pi^0$	46.00 ± 1.73
K^+K^-	21.63 ± 0.73
$K^0_S K^0_L$	12.96 ± 0.39
m/h < 1.8	45.50 ± 3.44
1.8 - 3.7	$33.45 \pm 0.28 (2.00)$
> 3.7	17.16 ± 0.31
Total	692.3 ± 4.2

April 7-10, 2014

S.Eidelman, BINP

p.30/61

April 7-10, 2014

Do we have completely correct ISR theory?

S.Eidelman, BINP

p.32/61

BaBar data higher than CMD-3, CMD-2 and CMD-3 agree

S.Eidelman, BINP

p.33/61

BaBar data higher than CMD-3

Very preliminary SND data agree with BaBar

The first measurement of radiative decays above 1.4 GeV, $\rho(1450)$ and $\phi(1680)$, the $\pi^0 \gamma$ also looked for, 3γ suffers from QED background

S.Eidelman, BINP

p.37/61

Missing States – Isospin Relations

- Correctly separate I = 0 and I = 1, e.g., $e^+e^- \rightarrow \pi^+\pi^- 4\pi^0$ has $\omega(\phi)\eta$ with I = 0
- $K\bar{K}\pi K^+K^-\pi^0$, $K^0_SK^{\pm}\pi^{\mp}$ seen, $K^0\bar{K}^0\pi^0$ not yet
- Even more combinations with $K\bar{K}\pi\pi$, recent progress at BaBar

Importance of FSR Corrections – I

S. Dobbs et al., Phys. Rev. Lett. 109, 082001 (2012) used 9.3 \cdot 10⁶ $\Upsilon(2S)$ of CLEO data to study $\Upsilon(2S) \rightarrow \eta_b(2S)\gamma$

Importance of FSR Corrections – II

Group	Signal	$\Delta M_{ m HF}, { m MeV}$	$M, { m MeV}$	Sign., σ
"CLEO"	$11.4^{+4.3}_{-3.5}$	$48.7 \pm 2.3 \pm 2.1$	$9974.6 \pm 2.3 \pm 2.1$	4.9
Belle	$(25.8 \pm 4.9) \cdot 10^3$	$24.3^{+4.0}_{-4.5}$	$9999.0 \pm 3.5^{+2.8}_{-1.9}$	4.2

R. Mizuk et al., Phys. Rev. Lett. 109, 232002 (2012) (Belle) at the $\Upsilon(5S)$

17 times larger statistics – no signal, UL for \mathcal{B} 8 times smaller!

S.Eidelman, BINP

p.41/61

Conclusions on HVP

- VEPP-2000 is running smoothly with CMD-3 and SND
- New channels with many neutrals observed
- CMD-3 and SND at VEPP-2000 will provide high accuracy, comparable or better than ISR measurements, the tentative goals are 0.35%(0.5%) for π⁺π⁻ and 3% for multibody modes
- Below 2 GeV progress (a factor of 2-3) expected in exclusive σ 's due to scans in Novosibirsk and ISR from KLOE, BaBar, Belle, BES3 and Belle2
- Above 2 GeV R measurements with 3-4% accuracy at BES3 and KEDR
- More precise measurements of Γ_{ee} for the narrow ψ and Υ at KEDR and Belle
- Various high-statistics experiments will substantially improve the accuracy of vacuum polarization calculations for $(g_{\mu} - 2)/2$

Transition Form Factors - I (General)

Transition Form Factors - II (General)

- We are interested in studying the $P\gamma\gamma$ vertex and the related TFF $\mathcal{F}_P(q_1^2, q_2^2)$, at any $q_{1(2)}^2$ and $P = \pi^0, \eta, \eta',$ the processes studied are $P \to \gamma^{(*)}\gamma^{(*)}, \gamma^* \to P\gamma^{(*)}$ and $\gamma^*\gamma^* \to P$
- In e^+e^- annihilation we study: $e^+e^- \to \gamma^* \to P\gamma$, $q_1^2 = s > 0$ and $q_2^2 = 0$; $e^+e^- \to \gamma^* \to P\gamma^* \to Pl^+l^-$, $l = e, \mu$, $q_1^2 = s > 0, 4m_l^2 < q_2^2 < (\sqrt{s} - m_P)^2$; $e^+e^- \to e^+e^-\gamma^*\gamma^* \to e^+e^-P$ with $q_{1(2)}^2 < 0$
- In VDM (vector dominance model) hadrons are produced via vector mesons, so any production of vectors $\gamma^* \to V \to P\gamma^{(*)}$ is relevant, e.g., $e^+e^- \to V \to P\gamma$ with $q_1^2 \sim m_V^2$ and $q_2^2 = 0$ or $e^+e^- \to V \to Pl^+l^-$ with $q_1^2 \sim m_V^2$ and $4m_l^2 < q_2^2 < (m_V - m_P)^2$
- At the V factory radiative decays like $V \to P\gamma$ are a copious source of P decays, e.g., $P \to l^+ l^- \gamma$ and $P \to l^+ l^- l^+ l^-$ can be studied

10 times larger statistics expected at VEPP-2000

The first measurement of radiative decays above 1.4 GeV, $\rho(1450)$, $\phi(1680)$ M.N. Achasov et al., arXiv:1312.7078

S.Eidelman, BINP

p.46/61

$$e^+e^- o \eta' \gamma$$

Seen in ϕ decays only! A study of $\sigma(s)$ not simple. BaBar measured at $\Upsilon(4S)$ First observed by CMD-2 from 5.5M ϕ 's with 6 events only R.R. Akhmetshin et al., Phys. Lett. B 415 (1997) 445

Group	Date	$N_{\rm ev}$	$\mathcal{B}, 10^{-5}$
CMD-2	2000	30	6.4 ± 1.4
KLOE	2002	120	$6.10 \pm 0.61 \pm 0.43$
SND	2003	12	$6.7^{+2.8}_{-2.4}\pm0.8$
KLOE	2007	3407	$6.25 \pm 0.28 \pm 0.11$
PDG	2012	_	6.25 ± 0.21

R.R. Akhmetshin et al., Phys. Lett. B 613 (2005) 29

S.Eidelman, BINP

p.48/61

S.Eidelman, BINP

p.49/61

 $e^+e^- \rightarrow \pi^0 e^+ e^-$ in the ϕ energy range

R.R. Akhmetshin et al., Phys. Lett. B 503 (2001) 237

S.Eidelman, BINP

p.50/61

Conversion Decays of ϕ Mesons – II

 $e^+e^- \to \eta e^+e^-$ in the ϕ energy range

R.R. Akhmetshin et al., Phys. Lett. B 501 (2001) 191

Summary of ρ , ω , ϕ Conversion Decays

	l = e		$l=\mu$	
Decay	$\mathcal{B}_{ ext{exp}}$	$\mathcal{B}_{ ext{th}}$	$\mathcal{B}_{ ext{exp}}$	$\mathcal{B}_{ ext{th}}$
$\rho \to \pi^0 l^+ l^-$	$< 1.2 \cdot 10^{-5}$	$4.1 \cdot 10^{-6}$	_	$4.6 \cdot 10^{-7}$
$ ho o \eta l^+ l^-$	$< 0.7 \cdot 10^{-5}$	$2.7 \cdot 10^{-6}$	—	$7.0\cdot10^{-11}$
$\omega ightarrow \pi^0 l^+ l^-$	$(7.7 \pm 0.6) \cdot 10^{-4}$	$7.9 \cdot 10^{-4}$	$(1.3 \pm 0.4) \cdot 10^{-4}$	$9.2 \cdot 10^{-5}$
$\omega o \eta l^+ l^-$	_	$6.0 \cdot 10^{-6}$	_	$1.8 \cdot 10^{-9}$
$\phi \to \pi^0 l^+ l^-$	$(1.12 \pm 0.28) \cdot 10^{-5}$	$1.6 \cdot 10^{-5}$	_	$4.8 \cdot 10^{-6}$
$\phi \to \eta l^+ l^-$	$(1.15 \pm 0.10) \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$< 9.4 \cdot 10^{-6}$	$6.8 \cdot 10^{-6}$

Decays with muons are much worse studied

It's interesting to disentangle the $\rho\pi$ and direct 3π modes

April 7-10, 2014

BaBar data higher than old data by ~ 15%, not confirmed by new SND data? Dominated by $e^+e^- \to \eta\rho$

QCD Studies in $\gamma \gamma \to M_1 M_2$ at Belle				
Final state	$\int L dt$, fb ⁻¹	$W, { m GeV}$	$ \cos heta^* $	Reference
$\pi^+\pi^-,$	87.7	2.4-4.1	< 0.6	H. Nakazawa et al.,
K^+K^-				PLB 615, 39 (2005)
$p\bar{p}$	89	2.025-4	< 0.6	C.C.Kuo et al.,
				PLB 621, 41 (2005)
$\pi^0\pi^0$	223	0.6 - 4.1	< 0.8	S.Uehara et al.,
				PRD 79, 052009 (2009)
$\eta\pi^0$	223	0.84 - 4.0	< 0.8	S.Uehara et al.,
				PRD 80, 032001 (2009)
$\eta\eta$	393	1.096-3.8	< 0.9	S.Uehara et al.,
			< 1.0	PRD 82, 114031 (2010)
$K^0_S K^0_S$	972	1.05 - 4.0	< 0.8	S.Uehara et al.,
				PTEP2013(2013)123C01

Single-tag measurements probe $\gamma\gamma^*$

- P. del Amo Sanchez et al. (BaBar), Phys. Rev. D 84, 052011 (2011)
- J. Gronberg et al. (CLEO), Phys. Rev. D 57, 33 (1998)

Belle data do not confirm fast rise observed at BaBar S. Uehara et al., Phys. Rev. D 86 (2012) 092007

Single-tag $\gamma \gamma \rightarrow \pi^0 \pi^0$ at Belle – I

- Background for single-tag $\gamma \gamma \rightarrow \pi^0$ (759 fb⁻¹)
- A clear signal of $f_2(1270)$, possibly $f_0(980)$?
- A few thousand events, $3 < Q^2 < 30 \text{GeV}^2$ and 0.5 < W < 2.5 GeV
- Information on transition f/f for tensors, scalars; with other final states to axial vectors

Conclusions

- e^+e^- colliders (DAFNE, VEPP-2000, BEPC-II and SuperKEKB) have a very high potential for studying $\gamma^{(*)}\gamma^{(*)}$ physics
- A lot of different possibilities: $e^+e^- \rightarrow P\gamma$, Pl^+l^- , $P\pi^+\pi^-$, $e^+e^- \rightarrow e^+e^-P$
- KLOE-2 with taggers $-\Gamma_{\gamma\gamma}$ for π^0 , η , $\gamma\gamma \to \pi^0\pi^0$
- Taggers would be extremely helpful, but they are not absolutely necessary
- $\mathcal{F}_P(q_1^2, q_2^2)$ can be studied in various regions of q_i^2 , hopefully leading to better modeling of HLbL for a_μ