

KETEK GmbH Munich - Germany

SiPM Solutions

realized by KETEK

W. Hartinger, F. Wiest, P. Iskra, T. Ganka

EPS-TIG – Ravenna (Italy)

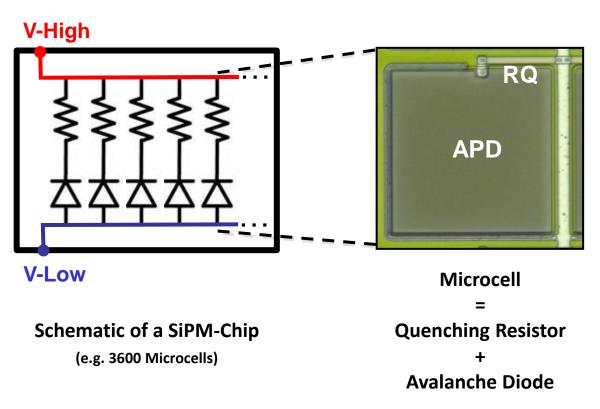
Nov. 11-12, 2013

Creative Detector Solutions

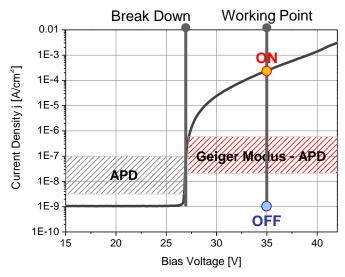
SiPM solutions realized by KETEK

SiPM

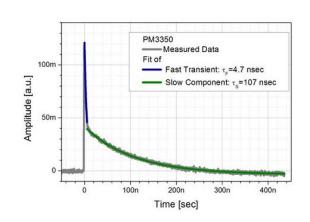
- Working principles
- Characteristics
- Applications


KETEK SiPM off-the-shelf devices

- Key features and standard portfolio
- Technology
- GE and PDE of different microcell types

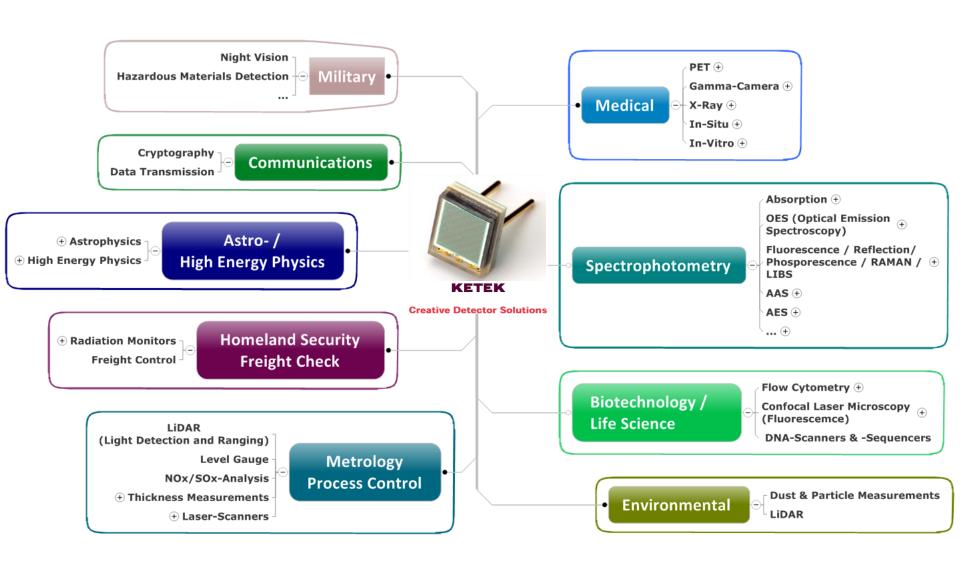

KETEK customized devices for CERN

- with very small microcell pitch
- with very low optical cross talk
- Summary and outlook
- Conclusions


Working Principle of a Silicon Photomultiplier (SiPM)

- Micro-APDs are operated above breakdown:
 Geiger mode (single photon counting)
- Microcell signal is independent of incoming light
- Device signal = sum of all microcells (contains intensity information)

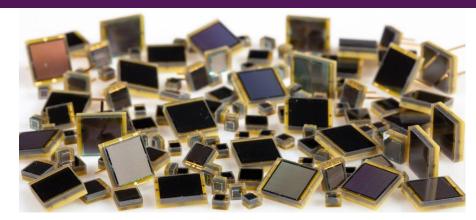
Working Principle

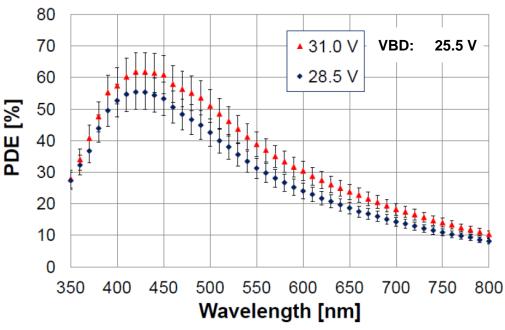

SiPM Pulse Shape

Comparison of Low Level Light Sensors

EPS-TIG - Nov 11-12, 2013, Ravenna (Italy)

	PMT Photomultiplier Tube	APD Avalanche Photodiode	SiPM Silicon Photomultiplier
Quantum Efficiency	25% 40%	60% 80%	80%
Single Photon Resolution	✓		✓
Operation Voltage	1 - 3 kV	100 - 500 V	20 80 V
Gain	10 ⁴ - 10 ⁹	30 - 300	10 ⁵ - 10 ⁷
Insensitivity to Magnetic Field		✓	✓
Miniaturization		✓	✓
Production Costs	Medium	Low	Potentially Low


SiPM Applications



Key Features of KETEK's SiPM Sensors Overview

- Very high PDE
 - up to 60 % for 50µm cell type @420 nm
- Huge gain
 - $\min. 10^6$
- Optimized for blue light sensitivity
 - 420 nm peak sensitivity
- Low dark rate and excess noise
 - DR typically below 300 kHz/mm²
 - XT below 25% at 20% OV
 - DR and XT dep. on cell- and device type
- Huge bias voltage range of stable operation
 - up to 30% overvoltage
- Extremely low temperature coefficient
 - below 1% above 10% overvoltage
- Single channel portfolio
 - 4 chip / package sizes
 - 5 micropixel types

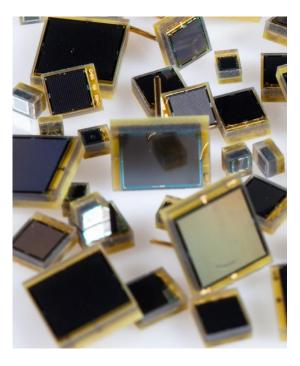
PM1150: Measurements performed by CERN / Iouri Musienko (1.0 mm² active area, 50 μm cell pitch, 70% GE, no trench)

Status KETEK SiPM Portfolio

November 2013

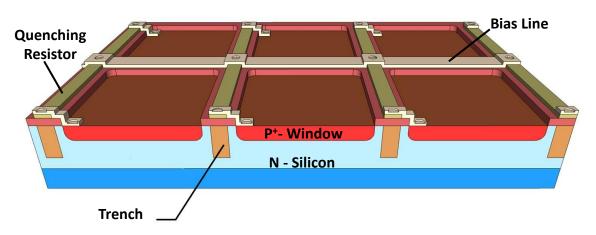
VETEN	C+~~~~~	7 C:DV V	Modules
KFIFK	Standar	a Sirivi	MODITIES

Туре	Active Area [mm²]	Cell Pitch [μm]	Geometrical Efficiency [%]	PDE @ 420 nm [%]	Dark Rate @ 20% OV [MHz]	Package Size [mm²]	Connection	Order Code
	1.2 x 1.2	25	48	> 30	< 0.7	2.0 x 2.5	SMD	PM1125-B48N50S-Q3*
PM11*	1.2 x 1.2	50	70	> 45	< 0.7	2.0 x 2.5	SMD	PM1150-B70N75S-Q3*
PM22*	2.0 x 2.0	50	70	> 45	< 2.0	2.8 x 3.3	SMD	PM2250-B70N75S-Q3*
PM33	3.0 x 3.0	50	70	> 50	< 4.5	3.8 x 4.3	SMD or Pin	PM3350-B70N75S-P4


KETEK SiPM Modules with Optical Trench Isolation

	Туре	Active Area	Cell Pitch	Geometrical Efficiency	PDE @ 420 nm	Dark Rate @ 20% OV	Package Size	Connection	Order Code	
		[mm²]	[µm]	[%]	[%]	[MHz]	[mm²]			
PM11*		1.2 x 1.2	50	63	> 40	< 0.7	2.0 x 2.5	SMD	PM1150-B63T75S-Q3*	٧
	PM11*	1.2 x 1.2	75	72	> 45	< 0.7	2.0 x 2.5	SMD	PM1175-B72T85S-Q3*	٧
		1.2 x 1.2	100	81	> 50	< 0.7	2.0 x 2.5	SMD	PM11100-B81T95S-Q3*	٧
PM22*		2.0 x 2.0	50	63	> 40	< 2.0	2.8 x 3.3	SMD	PM2250-B63T75S-Q3*	v
	PM22*	2.0 x 2.0	100	81	> 50	< 2.0	2.8 x 3.3	SMD	PM22100-B81T95S-Q3*	v
PM33		3.0 x 3.0	50	63	>40	< 4.5	3.8 x 4.3	Pin or SMD	PM3350-B63T75S-P4/Q3	~
	PM33	3.0 x 3.0	60	66	> 42	< 4.5	3.8 x 4.3	Pin or SMD	PM3360-B66T75S-P4/Q3	v
		3.0 x 3.0	75	72	> 45	< 4.5	3.8 x 4.3	Pin or SMD	PM3375-B72T89S-P3/Q3*	v
	PM66	6.0 x 6.0	60	66	> 42	< 18	6.8 x 7.8	Pin	PM6660-B66T80S-P4	~

EPS-TIG - Nov 11-12, 2013, Ravenna (Italy)

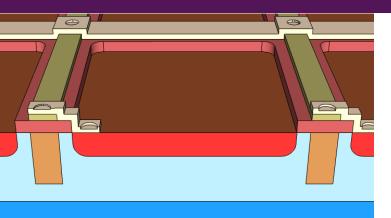

New devices 2014:

- PM6660 SMD December 2013
- PM55xx: Chip size package June 2014
- 9-Channel-Array
 Q2 2014

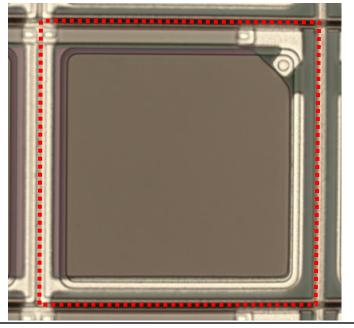
Basic Construction of the KETEK Microcell

Section of KETEK SiPM Microcell

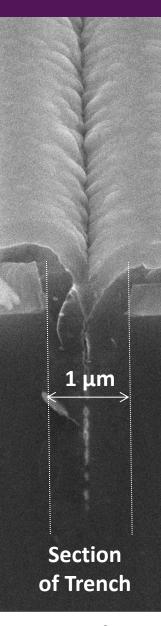
- Silicon P on N structure with high Geiger efficiency
- Shallow entrance window with high quantum efficiency
- Optimized geometrical fill factor
- ⇒ High photon detection efficiency

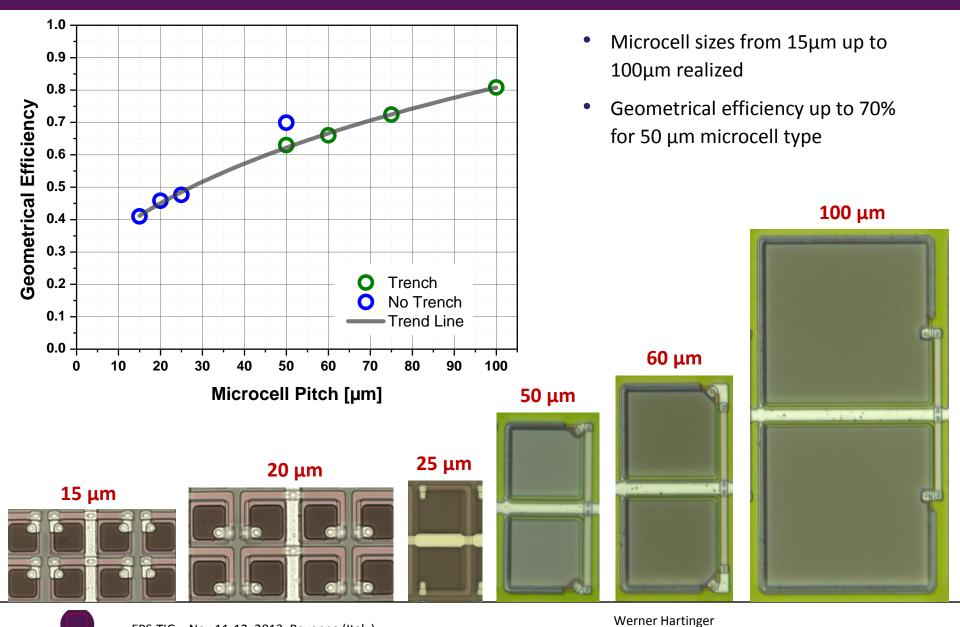

Available in two technologies -

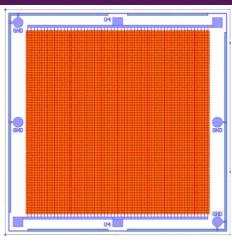
KETEK Standard Technology


- Technology optimized for maximum GE
- Devices with very high PDE
- Particularly suitable for small microcells and small active area

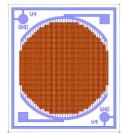
KETEK Trench Technology


- Technology with improved optical barrier and low-RC readout
- Devices with low crosstalk and improved timing
- Particularly suitable for large microcells and large area devices


Section and Top View

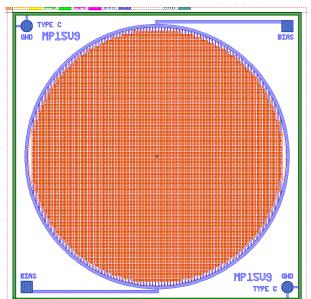

- Each microcell is completely surrounded by an optical trench isolation
- The trench is very narrow with a width of 1.0 μm

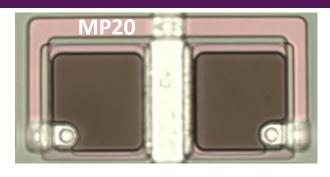
Geometrical efficiency of different microcell types



KETEK SiPM devices with small microcell pitch

Chip Type A:


- Active area: 4.84 mm²
- 12100 cells with 20 µm pitch
- PDE at 515nm: 20% ... 23%
- PDE at 420 nm: 30% ... 35%

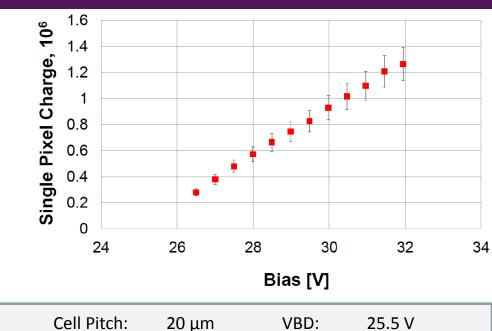


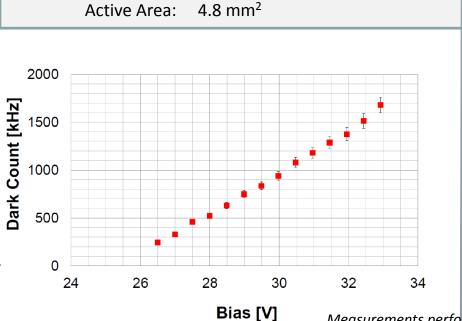
EPS-TIG - Nov 11-12, 2013, Ravenna (Italy)

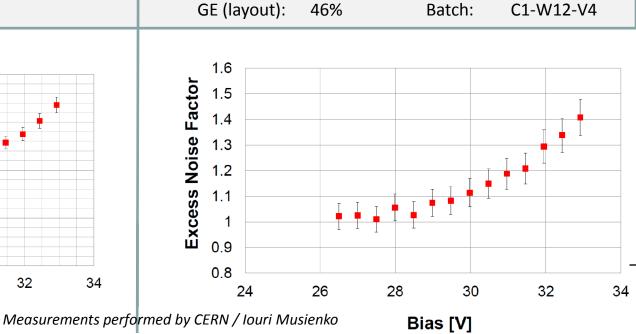
Chip Type B:

- Active area: 1.0 mm²
- 4384 cells with 15 μm pitch
- PDE at 515nm: 14% ... 15%
- PDE at 420 nm: 20% ... 23%

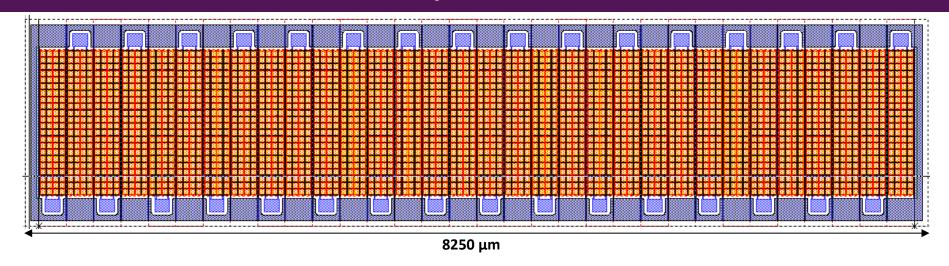



Chip Type C:


- Active area: 5.0 mm²
- 22376 cells with 15 μm pitch
- PDE at 515nm: 17% ... 20%
- PDE at 420 nm: 22% ... 24%

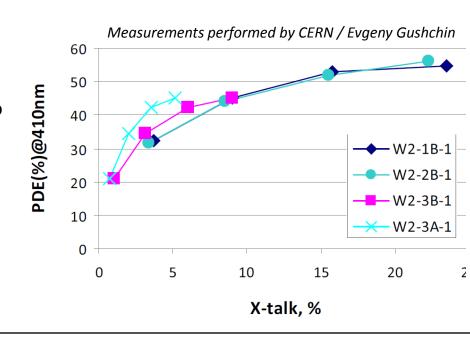

Basic SiPM parameters of chip type A

20μm Cell Pitch Type

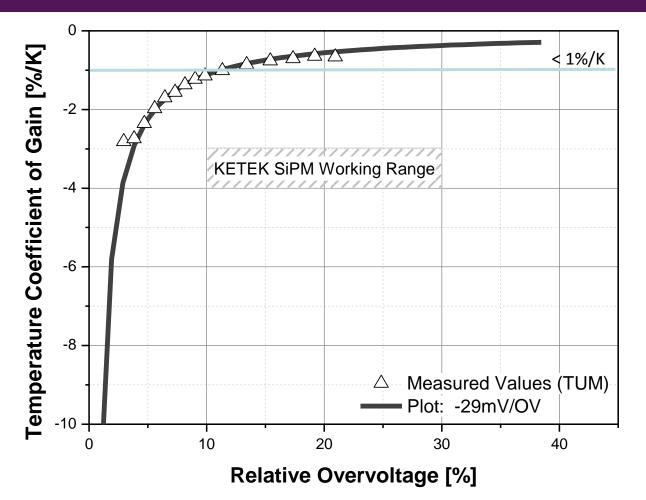


KETEK SiPM devices with low optical cross talk

Geometry of device:


32 Bias Bondpads ("Bias") with GND Bond Frame

Cell Pitch: 60 μm x 57.5 μm


Quantity of cells: 88 per channel // 2816 per chip

First Spectroscopic results:

PDE (410 nm) ~ 45% and XT ~ 5% for Trench-Version ("3A")!

Temperature Coefficient of the Gain

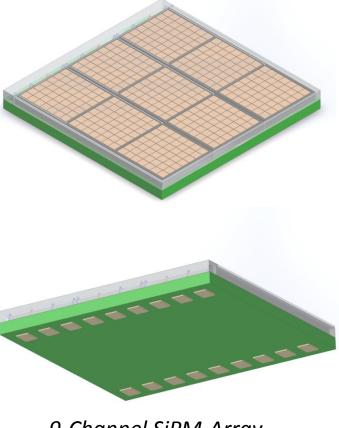
$$\begin{split} \frac{1}{G} \cdot \left(\frac{\partial G}{\partial T} \right) &= -\frac{1}{\Delta V} \cdot \left(\frac{\partial V_{BD}}{\partial T} \right) \\ &\approx \frac{-22mV}{\Delta V} \cdot K^{-1} \\ &\stackrel{\text{G}}{\underset{AV}{}} \stackrel{\text{Gain}}{\underset{Overvoltage}{}{\underset{T}{}}} \\ \text{VBD} & \underset{Temperature}{\underset{Model age}{}{\underset{Notation}{}}} \end{split}$$

Low temperature coefficient of VBD

EPS-TIG - Nov 11-12, 2013, Ravenna (Italy)

Operation at high overvoltage

Extremely low temperature coefficient of the gain


Summary and Outlook

Summary

 KETEK SiPM devices feature a very high PDE, low excess noise and a low temperature coefficient of the gain

Next steps

- Continuous noise reduction (DR, X-Talk)
 by enhancing the KETEK trench technology
- Enhancement of pulse shape and timing properties by optimizing parasitic elements and readout
- Chip size packages
- Arrays on package level

9-Channel SiPM-Array

Conclusions for linking science and industry

Encourage communication

- Workshops & Symposiums
- Direct visits and meetings on expert level
- Concret specifications and requirements

Projects

Link Applied Science with RnD budgets and vice versa

WELCOME TO KETEK

SILICON DETECTORS FOR X-RAY AND OPTICAL SPECTROSCOPY

Q

PRODUCTS HOME

COMPANY

DOWNLOADS

NEWS

CONTACT

VITUS SDD

Silicon Drift Detectors with 7 mm² to 100 mm² active area for X-rav spectroscopy read more

AXAS

Analytical X-ray Acquisition Systems complete with SDD, preamplifier and pulse processor read more

VIAMP

OEM solution combines Silicon Drift Detector with preamplifier in optional housing read more

...read more

VICO

Electronic components for optimised use of VITUS SDDs in OFM devices read more

SIPM

SiPM Technology

Accessories

Additional equipment for Silicon Drift Detectors, e.g. preamps, DPP etc.

read more

SiPM

Silicon Photomultipliers with 1.4 mm² to 36 mm² active area for low-level light detection read more

FOUNDATION OF...

Fraunhofer-Einrichtung für Modulare Festkörper-Technologien (EMFT), Siemens AG, LFoundry GmbH, KETEK...

NEW 50MM2 HIGH-END

KETEK is introducing its new 50mm² silicon drift detector with unpecedented guaranteed energy...

...read more

PRODUCTS

VITUS SDD AXAS VIAMP Accessories SDD Technology

COMPANY

Short Facts Company Founder Managing Directors Managing Team History Careers

DOWNLOADS

VITUS SDD AXAS VIAMP VICO SIPM Newsletter

NFWS

Product and Company News Conferences and Events News Archive

CONTACT

Headquarters How to find us From Airport to us By public Transport Sales Request a Quote

Send a Message China Agent Legal Notice

