
Geant4 Version 10:	

Lessons learnt

A. Dotti for the Geant4 collaboration
Forum on Concurrent Programming Models and Frameworks
Wednesday, 15 January 2014

Design Considerations: the process to G4 Version 10

•We first defined our main design goals:	

- Make efficient use of many-core technologies reducing memory usage
w.r.t. MP, CoW, …	

- New Geant4 should be an evolution from current G4	

- User migration cost should be as minimal as possible	

•A long (3 years) prototyping phase with well defined
incremental goals:	

1.First define the technology 	

2.Produce stand-alone code (e.g. branched from G4) showing main

functionalities 	

3.Demonstrate scalability of solutions	

4.Integrate in main code-base	

5.Release and patch

!2

Design Considerations: the process to G4 Version 10

!3

G4MT 9.4. (2011) G4MT 9.5
(2012)

G4
10.0.beta

G4 10.0
(Dec. 2013)

G4 10
series

(2014+)

•  Proof of principle!
•  Identify objects to

be shared!
•  First testing!

•  MT code
integrated into
G4!

•  API re-design!
•  Example migration!
•  Further testing!
•  First optimizations!

•  Public release!
•  All functionalities

ported to MT!

•  Further
Refinements!

•  Focus on further
performance
improvements!

Where to start from?

•In MC simulation events are independent, natural choice: event-
level parallelism	

- Requires all code to be thread-safe, two options possible:	

1.Review each single class in G4	

2.Develop a general strategy that is valid everywhere	

•Second option requires long initial design/prototyping work
but it is more beneficial in the long run (thread-local-storage) 	

•After this general design phase we focused on reducing memory
footprint (split-classes)

!4

Thread-safety in Version 10.0

•Thread-safety implemented via Thread Local Storage
- Managers (e.g. singleton) are basic components: “naturally” thread-local

•“Split-class” mechanism: reduce memory consumption	

- Read-only part of most memory consuming objects shared between thread:

Geometry, Physics Tables	

- Rest is thread-private

!5

GeometryObject

- shapeSize
- shapePosition
- sensitiveDetector

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1
- sensitiveDetector

SplitClass Thread2
- sensitiveDetector

SplitClass Thread3
- sensitiveDetector

!6

Thread Local Storage

10% critical

Sp
ee

du
p

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

N threads

• Each (parallel) program has
sequential components
• Protect access to

concurrent resources
• Simplest solution: use mutex/lock	

• TLS: each thread has its own

object (no need to lock)
• Supported by all modern

compilers
• Challenge: only simple data types

for static/global variables can be
made TLS	

• Warning: hidden locks are
important too (e.g. operator
new, use of std::strstream)

NB: results obtained on toy application, not real G4

Multi-threading master/worker model

!7

24

Geometry and
Physics

configuration

0 1 2 3 4 N

Per-thread
Init

Per-thread
Init

Per-thread
Init

5 …

Event
Loop

Event
Loop

Event
Loop

End Local
Run

End Local
Run

End Local
Run

Merge in Global Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

Did we get it right?

•Constantly review design and implementation choices with partners:	

•Developer community: dedicated mailing-list for discussions, twiki pages, in-
depth face-to-face discussions	

•User community: release soon and often, setup a dedicated user-community
forum (31 threads, 27 are related to prototypes)	

•“Official” documentation: conference proceeding, articles, manuals (extremely
important also for developers)	

•We are not expert in the sector: collaboration with Computing
Scientist
•Collaboration between physicists (authors of algorithms) and computing scientists
(experts in how to efficiently implement them) is a key element of G4-MT
success	

•It also helps in reducing typical physicists attitude to “reinvent the wheel”

!8

Focus on important metrics

•Defined very early our goals and how to measure them:	

- Produce physics results equivalent to sequential code independently of number
of threads and event simulation order: Strong Reproducibility (much more difficult
than what it sounds)	

- Two main metrics: linearity of speedup; memory reduction
- Define immediately few test-benches (SimplifiedCalorimeter and FullCMS),
independent group responsible for monitoring	

•We have learned a lot from using very early different hw and sw
systems: x86_64, MIC, ARM, Atom architectures	

•Linux, Mac OS X	

•Initial plan included also WIN, on-halt due to man power, challenging due to non
POSIX standards	

•Measure often: at least once per month

!9

!10

MT libs Vs SEQ libs

Performances

!11

61 Physical cores

12 Physical cores

Absolute performances

•We did expect a penalty for MT (e.g. performances 1-thread < sequential): due
to TLS “machinery”	

•Challenge: understand TLS details, relatively new feature and documentation not always
complete/clear.	

•All initial performance issues have been solved:	

•There is only very little CPU penalty for MT builds	

•TLS is very powerful when used correctly, but should not be over-used	

!

•Improvements in MT often brought benefits also to sequential applications
(V10.0 w/ improved physics, MT functionalities, is faster than previous releases):	

•Re-arranging memory layout of geometry and physics (split-classes) bring some benefits in
some cases (improve cache hit ratio)	

•Forced us to review several areas of our code	

•Would have more difficult with a separate “code-base” or using ad-hoc technologies/

languages

!12

Benefits of MT developments for sequential code

!13

Comparing with sequential

!14

1=Sequential

1 thread =>	

Overhead for MT	

Very small CPU penalty	

~1%

10 threads =>	

50% memory w.r.t.	

10 sequential instances

5%

1=Sequential

G4 V10.0

Tools

• Finding right tools to develop MT code is a challenge:
- Development: IDE with integrated GDB sessions are useful (but not full support for TLS), use

coverity to fix possible defects, extensive use of CDash/CTest	

- Debug: we could not find any tool specifically designed to help debug MT applications	

- Most challenging aspect: crashes are non-reproducible, stack-traces are not always useful	

- Need a lot of experience: often developers ask the “experts” to re-run and debug	

- DRD is very useful for data-race identification (some experience needed to interpret output)	

- Performances/profiling: simple benchmarking is very useful if done often, full profiling tools
need to be MT aware (OpenSpeedShop, Gooda)	

- Interesting lesson: typical “sequential” tricks to speed up simulations (e.g. caching calculations),
may be not be so beneficial with many threads (increase hw cache misses). How to define
tradeoff? 	

•G4 comes with extensive set of tests/examples (240 are run nightly in cdash), earlier
MT migration would have helped to spot issues/bug earlier (lesson learnt: some sort of
test-driven development would have been beneficial)

!15

Gooda Example

!16

Technology Choices

•We did quite conservative (sw) technology choices:	

- Use only POSIX standard (e.g. pthreads)	

- Use only compiler supported features (e.g. TLS)	

•We believe these are good choices:
•Almost trivial to port to new architecture (e.g. MIC porting done in few
days)	

•Allow for integration with “frameworks” (provided that are
compatible w/ standards): we have examples integrating MPI and TBB	

•Remember Geant4 is a toolkit integrated in larger (experimental)
frameworks, not the other way around 	

•Very important: since these are standards, lots of example and
documentation, lots of experience from other fields

!17

Heterogeneous parallelism: MPI based G4MT

• MPI based parallelism available in Geant4	

• MPI works together with MT

Example:	

4 MPI jobs	

2 threads/job	

MPI job owns histogram

Next Step:	

Host + MIC simulation	

Based on MPI

What’s next?

•Further reduce memory consumption. Thumb-rule: fit
complex simulations on accelerators w/ O(100) threads and
O(GB) memory	

- Warning: minimize memory usage can sometime conflict with other
performance considerations (e.g. reduce memory “churn” may not always
be thread-safety)	

- In our experience profiling guided optimizations are very effective: run
profiling tools, identify top offender, work on them, repeat	

•Further CPU benefits will come looking at single algorithms for
new parallelization opportunities

!19

Kind of Conclusions: My vision for Geant4 Version
11.0 :-)

!20

