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Desigh Considerations: the process to G4 Version 10
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*We first defined our main design goals:

- Make efficient use of many-core technologies reducing memory usage
w.rit. MBE CoW, ...
- New Geant4 should be an evolution from current G4

- User migration cost should be as minimal as possible

* A long (3 years) prototyping phase with well defined
incremental goals:

|.First define the technology

2.Produce stand-alone code (e.g. branched from G4) showing main
functionalities

3.Demonstrate scalability of solutions

4.Integrate In main code-base

>.Release and patch



Desigh Considerations: the process to G4 Version 10
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e Public release
« MT code o All functionalities

integrated into ported to MT

G4 10
GAMT 9.5 G4 G4 10.0 .
GAMT 9.4. (2011) D = 5019) 10.0.beta / (Dec. 2013) (2014+)
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Where to start from?
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*In MC simulation events are independent, natural choice: event-
level parallelism

- Requires all code to be thread-safe, two options possible:

|.Review each single class in G4
2.Develop a general strategy that Is valid everywhere

* Second option requires long initial design/prototyping work
but It 1Is more beneficial in the long run (thread-local-storage)

* After this general design phase we focused on reducing memory
footprint (split-classes)



Thread-safety in Version 10.0

* [hread-safety implemented via Thread Local Storage
- Managers (e.g. singleton) are basic components: ‘naturally’ thread-local
* “Split-class” mechanism: reduce memory consumption
- Read-only part of most memory consuming objects shared between thread:

Geometry, Physics Tables
- Rest 1s thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread3
- sensitiveDetector

SplitClass Thread1 SplitClass Thread2
- sensitiveDetector - sensitiveDetector




Thread Local Storage
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 Fach (parallel) program has

sequential components

e Protect access to
concurrent resources

* Simplest solution: use mutex/lock

e TLS: each thread has its own
object (no need to lock)

* Supported by all modern
compilers

 Challenge: only simple data types
for static/global variables can be
made TLS

* Warning: hidden locks are
important too (e.g. operator

new, use of std: :strstream)



Multi-threading master/worker model

Geometry and

Event
Loop

End Local
Run

Physics
configuration

ez

Per-thread
al

Per-thread
Init

End Local
Run

Merge in Global Run

Per-thread
Init

Event Event
Loop Loop

End Local
Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads



Did we get it right?

 Constantly review design and implementation choices with partners:

*Developer community: dedicated mailing-list for discussions, twiki pages, in-
depth face-to-face discussions

*User community: release soon and often, setup a dedicated user-community
forum (31 threads, 2/ are related to prototypes)

* “Official” documentation: conference proceeding, articles, manuals (extremely
important also for developers)

*We are not expert in the sector: collaboration with Computing

Scientist

* Collaboration between physicists (authors of algorithms) and computing scientists
(experts in how to efficiently implement them) is a key element of G4-MT
success

* [t also helps In reducing typical physicists attritude to “reinvent the wheel”



Focus on important metrics

A7~

N

1 As
B 7 Whe

*Defined very early our goals and how to measure them:

- Produce physics results equivalent to sequential code independently of number
of threads and event simulation order: Strong Reproducibility (much more difficult
than what It sounds)

- Two main metrics: linearity of speedup; memory reduction

- Define immediately few test-benches (SimplifiedCalorimeter and FullCMS),
independent group responsible for monitoring

*We have learned a lot from using very early different hw and sw
systems: x86_64, MIC, ARM, Atom architectures

Linux, Mac OS X

*Initial plan included also WIN, on-halt due to man power, challenging due to non
POSIX standards

*Measure often: at least once per month
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Performances
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Absolute performances

el AL

*We did expect a penalty for MT (e.g. performances |-thread < sequential): due
to TLS "machinery”

*Challenge: understand TLS details, relatively new feature and documentation not always
complete/clear.
* All inrtial performance issues have been solved:

* There is only very little CPU penalty for MT builds
* TLS is very powerful when used correctly, but should not be over-used

*Improvements in MT often brought benefits also to sequential applications
(V10.0 w/ improved physics, MT functionalities, is faster than previous releases):

*Re-arranging memory layout of geometry and physics (split-classes) bring some benefits in
some cases (improve cache hit ratio)

*Forced us to review several areas of our code

* Would have more difficult with a separate “code-base” or using ad-hoc technologies/
languages
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Benefits of MT developments for sequential code
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Comparing with sequential
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Tools
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* Finding right tools to develop MT code is a challenge:

- Development: IDE with integrated GDB sessions are useful (but not full support for TLS), use
coverity to fix possible defects, extensive use of CDash/CTest

- Debug: we could not find any tool specifically designed to help debug MT applications

- Most challenging aspect: crashes are non-reproducible, stack-traces are not always useful
- Need a lot of experience: often developers ask the “experts” to re-run and debug
- DRD is very useful for data-race identification (some experience needed to interpret output)

- Performances/profiling: simple benchmarking is very useful if done often, full profiling tools
need to be MT aware (OpenSpeedShop, Gooda)

- Interesting lesson: typical “sequential” tricks to speed up simulations (e.g. caching calculations),
may be not be so beneficial with many threads (increase hw cache misses). How to define
tradeoff!

* G4 comes with extensive set of tests/examples (240 are run nightly in cdash), earlier
MT migration would have helped to spot issues/bug earlier (lesson learnt: some sort of

test-driven development would have been beneficial)
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Gooda Example
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Technology Choices
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*We did quite conservative (sw) technology choices:

- Use only POSIX standard (e.g. pthreads)
- Use only compiler supported features (e.g. TLS)

*We believe these are good choices:
* Almost trivial to port to new architecture (e.g. MIC porting done In few
days)
* Allow for integration with “frameworks” (provided that are
compatible w/ standards): we have examples integrating MPl and TBB

*Remember Geant4 is a toolkit integrated in larger (experimental)
frameworks, not the other way around

*Very important: since these are standards, lots of example and
documentation, lots of experience from other fields
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Heterogeneous parallelism: MPI based G4AMT

 MPI based parallelism available in Geant4
e MPI works together with MT

Dose Distnbution Dose Cestnntion

Example:
4 MPI jobs

2 threads/job
MPI job owns histogram

Dose Distnbution Dose Cestnution

Next Step:
Host + MIC simulation
Based on MPI




What’s next?
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* Further reduce memory consumption. [ humb-rule: fit

complex simulations on accelerators w/ O(100) threads and
O(GB) memory

- Warning: minimize memory usage can sometime conflict with other
berformance considerations (e.g. reduce memory “‘churn” may not always
be thread-safety)

- In our experience profiling guided optimizations are very effective: run

brofiling tools, iIdentify top offender; work on them, repeat

* Further CPU benefits will come looking at single algorithms for
new parallelization opportunities
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Kind of Conclusions: My vision for Geant4 Version
11.0:-)
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M User Interface Application

Host Parallelism

(cou/accellerator)

CPU (event level
parallelism)

Core/Thread (intra-
model parallelism)
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