Geant4 Version 10:
Lessons learnt

A. Dotti for the Geant4 collaboration
Forum on Concurrent Programming Models
Wednesday, 15 January 2014

d Frameworks

h NATIONAL
! A- - ACCELERATOR

LABORATORY

[
)

Desigh Considerations: the process to G4 Version 10

el AL

f b M\

*We first defined our main design goals:

- Make efficient use of many-core technologies reducing memory usage
w.rit. MBE CoW, ...
- New Geant4 should be an evolution from current G4

- User migration cost should be as minimal as possible

* A long (3 years) prototyping phase with well defined
incremental goals:

|.First define the technology

2.Produce stand-alone code (e.g. branched from G4) showing main
functionalities

3.Demonstrate scalability of solutions

4.Integrate In main code-base

>.Release and patch

Desigh Considerations: the process to G4 Version 10

el Ar>

f b M\

e Public release
« MT code o All functionalities

integrated into ported to MT

G4 10
GAMT 9.5 G4 G4 10.0 .
GAMT 9.4. (2011) D = 5019) 10.0.beta / (Dec. 2013) (2014+)

Proof of principle APl re-design * Further
* lIdentify objects to * Example migration Refinements

be shared » Further testing e Focus on further
* First testing * First optimizations performance

improvements

Where to start from?

el AL

o b M\

*In MC simulation events are independent, natural choice: event-
level parallelism

- Requires all code to be thread-safe, two options possible:

|.Review each single class in G4
2.Develop a general strategy that Is valid everywhere

* Second option requires long initial design/prototyping work
but It 1Is more beneficial in the long run (thread-local-storage)

* After this general design phase we focused on reducing memory
footprint (split-classes)

Thread-safety in Version 10.0

* [hread-safety implemented via Thread Local Storage
- Managers (e.g. singleton) are basic components: ‘naturally’ thread-local
* “Split-class” mechanism: reduce memory consumption
- Read-only part of most memory consuming objects shared between thread:

Geometry, Physics Tables
- Rest 1s thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread3
- sensitiveDetector

SplitClass Thread1 SplitClass Thread2
- sensitiveDetector - sensitiveDetector

Thread Local Storage

el AL

Speedup

10% critical
9.0000

8.0000
7.0000

6.0000

5.0000

4.0000

3.0000
2.0000

1.0000

0.0000

N threads

NB: results obtained on toy application, not real G4

f b M\

 Fach (parallel) program has

sequential components

e Protect access to
concurrent resources

* Simplest solution: use mutex/lock

e TLS: each thread has its own
object (no need to lock)

* Supported by all modern
compilers

 Challenge: only simple data types
for static/global variables can be
made TLS

* Warning: hidden locks are
important too (e.g. operator

new, use of std: :strstream)

Multi-threading master/worker model

Geometry and

Event
Loop

End Local
Run

Physics
configuration

ez

Per-thread
al

Per-thread
Init

End Local
Run

Merge in Global Run

Per-thread
Init

Event Event
Loop Loop

End Local
Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

Did we get it right?

 Constantly review design and implementation choices with partners:

*Developer community: dedicated mailing-list for discussions, twiki pages, in-
depth face-to-face discussions

*User community: release soon and often, setup a dedicated user-community
forum (31 threads, 2/ are related to prototypes)

* “Official” documentation: conference proceeding, articles, manuals (extremely
important also for developers)

*We are not expert in the sector: collaboration with Computing

Scientist

* Collaboration between physicists (authors of algorithms) and computing scientists
(experts in how to efficiently implement them) is a key element of G4-MT
success

* [t also helps In reducing typical physicists attritude to “reinvent the wheel”

Focus on important metrics

A7~

N

1 As
B 7 Whe

*Defined very early our goals and how to measure them:

- Produce physics results equivalent to sequential code independently of number
of threads and event simulation order: Strong Reproducibility (much more difficult
than what It sounds)

- Two main metrics: linearity of speedup; memory reduction

- Define immediately few test-benches (SimplifiedCalorimeter and FullCMS),
independent group responsible for monitoring

*We have learned a lot from using very early different hw and sw
systems: x86_64, MIC, ARM, Atom architectures

Linux, Mac OS X

*Initial plan included also WIN, on-halt due to man power, challenging due to non
POSIX standards

*Measure often: at least once per month

MT libs Vs SEQ libs

I I‘VUFVI W

m

2 0.034

<E .>/E

0.03

0.028

0.026

0.024

0.022

0.02

0.032

...

—&— 10.0.beta-cand02
——#&—— 10.0.beta-cand02-MT
* Test-beam DATA (normalized)

N R

..

102

cbeam o~ _ v\

Performances

el Ay
PN | SNy o \ W4
600 Throughput ThiroughpIut
500 | 50}
\
\
£ 400 "’ L aoy
= o
= . 61 Physical cores =
g 00 T 5%
T =
2 200¢ g 20|
L
100} '
o—o Intel Xeon Phi 10} 1
o o—e Cortex Al5
0 50! 100 150 200 0 n , . L
Number Threads 0 1 B zb Th 3d = >
Amper reads
800 Throughput;_
700} 1
12 Physical cores
600
g
g 500
€ 400
3
S 300
@

o—o Intel Xeon X5650 |

10 15 20 25
Number Threads

11

Absolute performances

el AL

*We did expect a penalty for MT (e.g. performances |-thread < sequential): due
to TLS "machinery”

*Challenge: understand TLS details, relatively new feature and documentation not always
complete/clear.
* All inrtial performance issues have been solved:

* There is only very little CPU penalty for MT builds
* TLS is very powerful when used correctly, but should not be over-used

*Improvements in MT often brought benefits also to sequential applications
(V10.0 w/ improved physics, MT functionalities, is faster than previous releases):

*Re-arranging memory layout of geometry and physics (split-classes) bring some benefits in
some cases (improve cache hit ratio)

*Forced us to review several areas of our code

* Would have more difficult with a separate “code-base” or using ad-hoc technologies/
languages

12

Benefits of MT developments for sequential code

el AL

CPU Time Ratio <9.X.Y/9.5>

1.4

0.6

Ratio - SimplifiedCalo higgs.FTFP_BERT.1400.4

| + AMD Opteron 6128 @2.00 GHz | _

| | | | |] I | I | I | | I | | |

| | | | | | | | | | | | | | | |
55 5005 o815,0:89 B0 B 8 e P e B IR0 T 2

Geant4 Version

f b M\

13

Comparing with sequential

Ratio of <CPU Time>/Event/Core

—h
-

Speedup Efficiency - 50 GeV |

1.08
106
1.04
102

;
0 98
0 96
0.94

Illlllllllll

1 =Sequential

'l l LI

0.9

(Mem(MT)/Ncore}/Mem(SEQUENTAL)

| thread =>
Overhead for MT

Very small CPU penalty
~ 1%

N Care

|0 threads =>
50% memory wirt.
|0 sequential instances

14

Tools

el AL
T e M\

* Finding right tools to develop MT code is a challenge:

- Development: IDE with integrated GDB sessions are useful (but not full support for TLS), use
coverity to fix possible defects, extensive use of CDash/CTest

- Debug: we could not find any tool specifically designed to help debug MT applications

- Most challenging aspect: crashes are non-reproducible, stack-traces are not always useful
- Need a lot of experience: often developers ask the “experts” to re-run and debug
- DRD is very useful for data-race identification (some experience needed to interpret output)

- Performances/profiling: simple benchmarking is very useful if done often, full profiling tools
need to be MT aware (OpenSpeedShop, Gooda)

- Interesting lesson: typical “sequential” tricks to speed up simulations (e.g. caching calculations),
may be not be so beneficial with many threads (increase hw cache misses). How to define
tradeoff!

* G4 comes with extensive set of tests/examples (240 are run nightly in cdash), earlier
MT migration would have helped to spot issues/bug earlier (lesson learnt: some sort of

test-driven development would have been beneficial)

15

Gooda Example

Reports

.| reports/Sample
] reports/GAMT-

) reporns/GAMT-old

reports /GAMT -new Motspots

7 Cycles Samples

\es
groces g oto® ot W“.o, 0“’0‘:‘ ...‘\,.o-.s'-‘:::i‘\w ‘\::su"-""
- P 8245843 (100%) » 5703358 (&9%) “3”5956 '4765539
& parFullcus 8229714 (99%) 5654865 (65X) 3500553 4TS24l
@ aggregated_kersel_object 91525 (1% 111330 (121%) 17110 28074
& vm i nux 4869 (%) 40659 (8315%) 1492 4067
& puppet 1431 (0%) 855 (59%) 556 723
& perf 1401 (%) 979 (6%%) 563 881
@ sshd 934 (o) 460 (4%) 873 1107
& kworker/9:0 358 (%) 248 (6%%) §7 9%
& khugepaged 308 (%) 190 (61%) 71 113
& kworker/7:0 308 (%) 234 (75%) 56 90
& kworker/0:0 298 (%) 190 (63%) 48 83
& kworker/14:2 278 (0%) 285 (102%) 56 105
W bt hrandd IR e 2 s AN 12
= 7 Cycles Samples Enter search term
c\et o cat
et nant W“"""“"’d“ﬂ,, ”,,\rd’":\:::“uw—:;‘_,.uf“’w‘ “‘_\uwﬂ‘l sa“"‘“w_ o W‘s\)““‘“‘:{ \w""“‘\:,n.,f' s uv‘xw““ o “,uan)“" ples
o {82‘5“3 (100%) W, ST03358 (69%) ’lm”ﬁ {47“639 ‘57453!2 ax “4’565713 (56x) B01ST (%) thZZOSZ (%) ‘5044% (%) ‘}724700 (20%) 41728 (%)
GAphysicsvector: :value(do. 249301 (%) 183440 (73%) #1361 96333 157004 (62%) 102099 (40%) 473 (%) 16477 (6%) 72405 (28%) 606 (%)
 cagasticHadrvec | eusHE : TH. 175220 (2%) 110935 (63%) 115668 177182 2405 (1x) jo21 (1x) 70 () 884 (%) 467 (M) 123127 (70%) 1660 (0%)
GANavigator: iLocateGlobal, 190355 (2%) 141634 (74X) 59378 74117 144841 (76X) 101920 (53%) 1958 (1%) 192 (&%) 789 (&%) 25192 (13%) 586 (%)
& G4PolyconeSide::DistanceA. 134038 (1% 80485 (60x) 95852 125190 14410 (10%) 10643 %) 1153 (%) 6291 (&%) 20 (%) S88G0 (43%) 636 (%)
& casteppingvanager: :0efine. 131792 (1%) 89575 (67%) 79845 £7085 75913 (57%) 68719 (52%) 358 (%) 7225 (5%) 3597 (2% 15542 (11%) 407 (0%)
® GACrossSectionDatastore: i 12169 (1% 78271 (64X) 73528 96325 73975 (60%) 36351 (2% %8 (%) 4541 (%) 2148 (17%) 13356 (10%) 38 (%)
& CLmEr: :MTwistEngine: :flac 107107 (%) 60097 (5&X) 89551 93810 0359 (=) 41231 (38%) 179 (%) 7622 (™) 15185 (14%) 447 (%)
GACIassicalrxd: :DusbStepp 82552 (% 37933 (45%) 113510 131667 723 (%) 94 (%) I (%) 2335 (%) 6141 (%) 17739 (Q1x) 199 (%)
& Ganavigator: :ComputeStep(. 110788 (%) 76064 (62X) 52331 68123 28749 (25%) 103838 (93%) 626 (%) 9063 (&%) 298 (%) 11041 (%) 417 (%)
GAvoxeINavigation: :Comput. 113825 (%) 80083 (70%) 50370 58626 62875 (55%) 55998 (4% 745 (%) 8238 (%) 4074 (3%) 11538 (10%) 98 (%)

16

Technology Choices

el AL

o b MY\

*We did quite conservative (sw) technology choices:

- Use only POSIX standard (e.g. pthreads)
- Use only compiler supported features (e.g. TLS)

*We believe these are good choices:
* Almost trivial to port to new architecture (e.g. MIC porting done In few
days)
* Allow for integration with “frameworks” (provided that are
compatible w/ standards): we have examples integrating MPl and TBB

*Remember Geant4 is a toolkit integrated in larger (experimental)
frameworks, not the other way around

*Very important: since these are standards, lots of example and
documentation, lots of experience from other fields

17

Heterogeneous parallelism: MPI based G4AMT

 MPI based parallelism available in Geant4
e MPI works together with MT

Dose Distnbution Dose Cestnntion

Example:
4 MPI jobs

2 threads/job
MPI job owns histogram

Dose Distnbution Dose Cestnution

Next Step:
Host + MIC simulation
Based on MPI

What’s next?

el AL

o b MY\

* Further reduce memory consumption. [humb-rule: fit

complex simulations on accelerators w/ O(100) threads and
O(GB) memory

- Warning: minimize memory usage can sometime conflict with other
berformance considerations (e.g. reduce memory “‘churn” may not always
be thread-safety)

- In our experience profiling guided optimizations are very effective: run

brofiling tools, iIdentify top offender; work on them, repeat

* Further CPU benefits will come looking at single algorithms for
new parallelization opportunities

19

Kind of Conclusions: My vision for Geant4 Version
11.0:-)

o1 AL

o b AN

M User Interface Application

Host Parallelism

(cou/accellerator)

CPU (event level
parallelism)

Core/Thread (intra-
model parallelism)

20

