Flavor and CP Solutions via~GIM in Bulk RS

LR with Liam Fitzpatrick, Gilad Perez -w/ Liam Fitzpatrick, Clifford Cheung

Introduction

- Lots of attention devoted to weak scale
- Flavor and CP remain outstanding issues
- Even more difficult to solve and test?
- Yet almost any theory of weak scale physics has implications for flavor and CP
* Usually bad!
- Almost any model with new physics involves lower scale; other interactions likely
- Worth seeking solutions in context of models, field theory
- Geometry, string theory as well
- Problems that won't have anthropic solutions!

Geometry and Flavor

- Extra-dimensional geometry promising for explaining hierarchies
- Warped geometry in particular provides multiple mass scales
- Exponential hierarchies natural in extra dimensions

■ Extra-d geometry might also explain flavor

- Bulk fields with nontrivial profiles
- Exponential dependence on bulk mass parameters so no very large parameters necessary
- Angles connected to masses in suggestive way

Outline

- Elaborate on Flavor
- Describe potential flavor and strong CP issues
- Show how to solve them
- How well can we do?
- New model to solve strong CP problem

RS1

Higgs

Where are fermions?

- Only Higgs needs to be on brane to satisfy hierarchy
- If light fermions on the brane, can satisfy observations with MFV like in SM
- However UV sensitive; not calculable
- Expect higher-dimension operators
- No explanations for small size of coefficient
- With bulk fermions, possible explanation of flavor
- However can no longer hide flavor violation and not MFV
- Nonetheless get NMFV (flavor violation primarily via 3 ${ }^{\text {rd }}$ generation)
- Almost good enough

Worth investigating possibilities

Flavor from Bulk Wave Functions

- When fermions in bulk, expect nontrivial fermion wave function profiles
- Fermion masses depend on overlap with Higgs
- Expect light fermions localized near Planck/Gravity brane
- (Heavy) top near TeV brane

Flavor hierarchies

- $\mathrm{d}_{\mathrm{z}} \mathrm{f}=(\mathrm{M} / \mathrm{k}+1 / 2) \mathrm{f}$
- $\mathbf{f} \sim \mathbf{z}^{\nu}$
$\square \mathrm{z} \sim \mathrm{e}^{\mathrm{kr} \mathrm{\phi}}$
- $\mathbf{f \sim} \sim \mathrm{e}^{\mathrm{kr} \phi(\mathrm{M} / \mathrm{k}+1 / 2)}$
- $\mathrm{M} / \mathrm{k}=\mathrm{V}<-1 / 2$: light quarks
- $\quad v>-1 / 2$: top quark
- Natural hierarchies from small deviations in M/k

Angles Natural as Well!

- No flavor symmetry necessary
- Mixing matrices can be anarchic
- Mixing angles from wave function hierarchies
- $\mathrm{Y}_{\mathrm{u}}=\mathrm{F}_{\mathrm{Q}} \mathrm{V}_{\mathrm{u}} \mathrm{Fu}$
- $\mathrm{Yu} \mathrm{Yu}{ }^{+}=\mathrm{F}_{\mathrm{Q}}\left(\mathrm{V}_{\mathrm{u}} \mathrm{F}_{\mathrm{u}} \mathrm{F}_{\mathrm{u}}{ }^{+} \mathrm{V}_{\mathrm{u}}{ }^{+}\right) \mathrm{F}_{\mathrm{Q}}{ }^{+}$
- When bulk mass diagonal, F_{Q} diagonalized with eigenvalues f_{Qi}
- $\mathrm{K}_{\mathrm{ij}}^{\mathrm{u}} \sim \mathrm{f}_{\mathrm{Qi}} / \mathrm{f}_{\mathrm{Q} \mathrm{j}}$
- Naturally scales as square root of masses
- Angles align with mass structure

Flavor from Bulk

\checkmark Masses
\checkmark Angles

- What about flavor violation?
- Seems very dangerous
- Functions violating flavor
- KK mode interactions violate flavor
- Surprisingly not nearly so bad as you'd expect

New sources of flavor, CP violation

- KK modes of gauge bosons don't have universal couplings
- Different profiles for different generations
- Different overlap with TeV-localized KK gluons
- Left and right handed fermions in bulk means (e.g.)
- Large contributions to K Kbar mixing

Better than you might think

- KK modes of gauge bosons don't have universal couplings
- Less severe in RS
- Light fields localized in UV
- KK gluons flat in UV

$$
\chi_{A}^{(n)}=\frac{e^{\sigma}}{N_{n}^{A}}\left[J_{1}\left(z_{n}^{A}\right)+\alpha_{n}^{A} Y_{1}\left(z_{n}^{A}\right)\right],
$$

IR contribution

- No flavor violations from UV

■ However also IR KK gluon-f f contributions

- However hierarchy of fermion wavefunctions in IR
- Light masses implies small wavefunctions
- Dominant contributions through mixing to top sector (NMFV)
- Gluon vertex: $\mathrm{L}_{\mathrm{u}} \operatorname{diag}(001) \mathrm{L}_{\mathrm{u}}{ }^{+}$
- $\left(\mathrm{V}_{\mathrm{CKM}}=\mathrm{L}_{\mathrm{u}} \mathrm{L}_{\mathrm{d}}{ }^{+}\right)$

~NMFV

-Still: LR contribution (to ε_{K}) constrains KK scale to be $\sim 8 \mathrm{TeV}$

Strong CP Violation

- Another potential problem "Little CP Problem"
- New sources of EDM when bulk fermions
- KK modes of fermions
- Both L and R KK modes ->large contributions

■ ~10-15 TeV KK modes

- (Assuming strong CP
problem solved)

This talk

- Two different models addressing different issues
- GIM-like mechanism with anarchic flavor matrices
- Additional flavor assumption
- Lowers KK scale to 2 TeV
- Sequestering C and P violation to solve strong CP
-Effectively superGIM-like at low energies
- Solves strong CP

How to do better than generic case?

- What is generic case?
- Flavor Violating Parameters:
- $\mathrm{Y}_{\mathrm{u}}, \mathrm{Y}_{\mathrm{d}}$ (Yukawas to Higgs)
- $C_{u / d}$
- C_{Q}
- (note notation $\mathrm{M}->\mathrm{C}$)
- Five flavor matrices when bulk flavor
- Vs. two in Standard Model
- Standard GIM says either ups or downs can be diagonalized
- Only flavor violation when both are present
- Can be virtual

Our Model: Bulk GIM Assumption

- Assume $\mathrm{Y}_{\mathrm{u}}, \mathrm{Y}_{\mathrm{d}}($ Yukawas to bulk Higgs) only flavor violating parameters
- Anarchic flavor violation
- Assume bulk mass: $\mathrm{C}_{\mathrm{u} / \mathrm{d}}=\mathrm{Y}_{\mathrm{u} / \mathrm{d}}{ }^{+} \mathrm{Y}_{\mathrm{u} / \mathrm{d}}$
- Assume bulk mass: $\mathrm{C}_{\mathrm{Q}}=\mathrm{r} \mathrm{Y}_{\mathrm{u}} \mathrm{Y}_{\mathrm{u}}{ }^{+}+\mathrm{Y}_{\mathrm{d}} \mathrm{Y}_{\mathrm{d}}{ }^{+}$
- (higher order terms, order one coeff not explicit)

Why this is a good thing:

- Despite anarchic Yukawa, theory flows to hierarchical theory (as before)
- Even with fewer parameters, we can get mixing angles (and flavor violation through mixing with the third generation)
() In the $\mathrm{r}->0$ limit, no flavor violation in down sector--solely in up quark sector
(-) Has added advantage that might be probed with precision top quark measurements

Value of r?

- r not a free parameter
- --Determined by quark masses
- $\mathrm{C}_{\mathrm{Q} 3}$ much smaller than other Cs implies through consistency relation
- $\operatorname{diag}\left(\mathrm{C}_{\mathrm{Q}}\right)=\operatorname{adiag}\left[\mathrm{r}\left(\mathrm{V}^{5}{ }_{\mathrm{KM}}{ }^{+} \mathrm{C}_{\mathrm{u}} \mathrm{V}^{5}{ }_{\mathrm{KM}}+\mathrm{C}_{\mathrm{d}}\right]\right.$
- r turns out to be small (between 0.1 and 0.4)

FCNC and EDM?

- FCNC suppressed by r^{2}
- Enough to lower KK scale to 2 TeV
- Furthermore EDMs also suppressed because like in SM
- Only a single phase

EDM only at two loops

- RSI: EDM is generated at one loop, only 2 gen' are needed. (Agashe, GP \& Soni 05)

$$
\begin{aligned}
I_{N} & \equiv \operatorname{Im}\left[F_{Q}\left(Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right) Y_{d} F_{d}\right]_{11} \\
& =\operatorname{Im}\left[F_{Q}\left(C_{Q}\right)\left(C_{Q} / a r+Y_{d} Y_{d}^{\dagger}(1-1 / r)\right) Y_{d} F_{d}\right]_{11}
\end{aligned}
$$

-5D MFV: Secretly only one phase, requires 3 gen' => 2 loops!

Possible Signatures

- Low energy:
- Small down type flavor violation
- DDbar CPV at about 10%
- Penguins vs tree level in delta $\mathrm{F}=1$ processes?
- High energy:
- Top FCNC: t->cZ few 10^{-6}
- High energy flavor preserving

KK gluon decaying into tops

- Maybe KK graviton or other KK modes

So far...

- Minimal Flavor Violation in UV
- Sort of GIM
- Small r reduces severity of flavor changing constraints

■ Can have KK scale as low as a few TeV

- Worth finding explicit realizations

Can we do better?

- Next model I present really has a close approximation to IR GIM
© KK scale higher (precision electroweak and unitarity of CKM)
- But much smaller flavor violation
(-) New solution to strong CP

Spontaneously Broken CP

- Address strong CP
- Why?
- Not many solutions
- Axion models: need to eliminate higher order terms breaking PQ symmetry
- Advantageous for EDM: "little CP" problem
- Occurs in most models addressing hierarchy
- Exploit a possible natural connection between flavor and CP
- No anthropic solution

Alert!

* Worst part of model is LH fermions on IR brane
- Necessary to avoid 1-loop CP violation
- In model where we also explain flavor
* Constraints from precision electroweak
- Precision measurements of fermion couplings

Precision Electroweak

- We will see that vanishing theta at tree level requires LH fermions on IR brane
- Strong precision electroweak constraints

■ KK mass $15-20 \mathrm{TeV}$;

- We accept and move on to solve strong CP

Figure 3: Diagrams that give contributions to electroweak observables at tree-level. The left diagram contributes to T and the right contributes to fermion-Higgs operators. $X^{(n)}$ indicates KK modes of bulk gauge fields.

Model

$$
\begin{aligned}
S= & S_{\text {bulk }}+S_{\text {brane }} \\
S_{\text {bulk }}= & \int d^{5} x \sqrt{G}\left\{-\bar{U}_{L}^{\prime}\left(M_{u}+g_{u} \Phi \delta\left(\phi-\phi_{0}\right)\right) U_{R}\right. \\
& \left.-\bar{D}_{L}^{\prime}\left(M_{d}+g_{d} \Phi \delta\left(\phi-\phi_{0}\right)\right) D_{R}+\text { h.c. }\right\}, \\
S_{\text {brane }}= & \int d^{4} x \sqrt{-g}\left\{\bar{Q}_{L} \tilde{H} \lambda_{u} U_{R}+\bar{Q}_{L} H \lambda_{d} D_{R}+\text { h.c. }\right\},
\end{aligned}
$$

Only Hermitian part of Φ couples to fermions
Futhermore Φ is CP odd so antisymmetric couplng

$$
\mathcal{L} \supset\left(\Phi_{[i j]}+\Phi_{[i j]}^{\dagger}\right)\left(\bar{\Psi}_{L i} \Psi_{R j}+\bar{\Psi}_{R i} \Psi_{L j}\right)
$$

Ingredients

- Exploit existing AdS spacetime isometry $\Phi\left(\right.$ bar $\Psi_{\mathrm{Li}} \Psi_{\mathrm{Rj}}+$ bar $\left.\Psi_{\mathrm{Ri}} \Psi_{\mathrm{Lj}}\right)$
- Guarantees vanishing tree level Θ
- Spont break CP with field sequestered field Φ
- Hides C violation and flavor violation from IR
- Flavor Symmetry
- U(3)Q x U(3)U x U(3) D ->U(3) by Yukawas
$->\mathrm{U}(1) 3$ by bulk fermion masses
->nothing by Φ couplings
- LH fields on IR brane giving ~GIM when Φ in UV and K K heavy

Ing I:Hermiticity of Wavefunction and Vanishing Tree Level Θ
 $$
\left.\left(\partial_{t}-\frac{\mu}{t}\right) F_{L}^{(0)}=0, \quad t=e^{t h \mid} \in \mid \in, 1\right]
$$

$$
F_{L}^{(0)}=\mathcal{P} \exp \left(\int^{t} \frac{\mu\left(t^{\prime}\right)}{t^{\prime}} d t^{\prime}\right)
$$

μ Hermitian due to AdS symmetries (essentially a type of parity)
F product of infinitesimal Hermitian matrices
Wave function on IR brane has real determinant

$$
Y_{u, d}=F_{q}^{(0)} \lambda_{u, d} F_{u, d}^{(0)} .
$$

Contains phase but has real determinant--- at tree level

Ing II:Sequestering C, flavor Violation

- Guarantees CP violation enters only through wavefunctions of bulk fermions
- Prevents dangerous operators such as $\Phi_{\mathrm{ij}} \mathrm{Q}_{\mathrm{Li}} \mathrm{H} \mathrm{U}_{\mathrm{Rj}}$
- Plus our "anarchic" mixing comes from third brane in bulk
- Shields it from IR
- Keeps KK modes very diagonal--important for loop effects
- Modes combination of regular and singular mode
- Regular mode vanishing in UV
- Singular mode small there
- Turnaround to regular mode deep in UV
- Shields from mass-dependent phase shift
- Value on IR brane will be essentially $\sqrt{ } 2$

Twisting

- Also called twisting in literature
- Diagonal wave functions up to localized Yukawa
- Enters into flavor, CP through wave function
- In fact in dual interpretation, we have flavor entering through wave function renormalization
- But in 5d geometry model is calculable

Ing III and IV: Flavor Symmetry and Isolated L fields

- ~GIM mechanism when 3rd brane->UV
- All mass structure from R fermions and no KK modes for L fermions
- no R matrices--in mass eigenstate basis all absorbed into mass insertions
()Flavor changing absorbed into $\mathrm{V}_{\mathrm{CKM}}$ like SM

$$
\begin{aligned}
V_{\mathrm{CKM}} & =L_{u} P_{0} L_{d}^{\dagger} \\
V_{u u} & =V_{\mathrm{CKM}} V_{\mathrm{CKM}}^{\dagger} \\
V_{d d} & =V_{\mathrm{CKM}}^{\dagger} V_{\mathrm{CKM}} .
\end{aligned}
$$

$$
P_{0} \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

But 0 mode wavefunctions enter through $(\mathrm{v} / \mathrm{M})^{2}$ effects

Angles naturally connected to masses in this model too

$$
\begin{aligned}
F^{(0)}(1) & =F\left(1 ; t_{0}\right) \times \exp (k r g \Phi) \times F\left(t_{0} ; \epsilon\right) \\
F\left(1 ; t_{0}\right) & \equiv\left[\mathcal{P} \exp \left(\int_{t_{0}}^{1} \frac{\mu}{t^{\prime}} d t^{\prime}\right)\right]=t_{0}^{-\nu} \\
F\left(t_{0} ; \epsilon\right) & \equiv\left[\mathcal{P} \exp \left(\int_{e}^{t_{0}} \frac{\mu}{t^{\prime}} d t^{\prime \prime}\right)\right]=\left(\frac{\epsilon}{t_{0}}\right)^{-\nu}
\end{aligned}
$$

Restrict to zero modes

$$
Y_{u, d} Y_{u, d}^{\dagger}=F_{u, d}\left(1 ; t_{0}\right) e^{k r g} F_{u, d}\left(t_{0} ; \epsilon\right) F_{u, d}\left(t_{0} ; \epsilon\right)^{\dagger} e^{k r q \Phi} F_{u, d}\left(1 ; t_{0}\right)^{\dagger}
$$

structure $\left(Y_{u, d} Y_{u, d}^{\dagger}\right) \approx \mathcal{D}_{j} \approx F_{u, d}\left(1 ; t_{0}\right)_{i k} \zeta_{k k^{\prime}} F_{\mathrm{u},(}\left(1 ; t_{0}\right)_{k^{\prime} j}^{\dagger}$ with $\zeta_{k k^{\prime}} \sim \mathcal{O}(1)$

$$
\begin{aligned}
& \left.\theta_{i j} \approx\left(m_{i} / m_{j}\right)^{-(\log t i)}\right)\left(\left(\operatorname{src} c_{c} \text { since } F\left(1 ; t_{0}\right) \text { contains only a fraction } \log t_{0} / \log e \quad\right.\right. \text { of mass hierarchy } \\
& t_{0} \sim 410^{-11}
\end{aligned}
$$

Example

$$
\begin{aligned}
\nu_{U} & =(-0.831,-0.665,-0.241) \\
\nu_{D} & =(-0.788,-0.734,-0.632) \\
\langle k r \Phi\rangle & =\left(\begin{array}{ccc}
0 & 1.039 i & -1.342 i \\
-1.039 i & 0 & 1.481 i \\
1.342 i & -1.481 i & 0
\end{array}\right) \\
g_{u} & =0.3 \\
g_{d} & =0.7 \\
t_{0} & =10^{-12}
\end{aligned}
$$

$$
\left(\begin{array}{c|c|c|}
\left|V_{u d}\right| & \mid V_{u s} & \left|V_{u b}\right| \\
\left|V_{c d}\right| & \mid V_{c d} & \left|V_{d}\right| \\
\mid V_{t d} & \left|V_{t a}\right| & V_{b t} \mid
\end{array}\right)=\left(\begin{array}{ccc}
0.082 & 0.185 & 0.0001 \\
0.185 & 0.080 & 0.046 \\
0.012 & 0.045 & 0.998
\end{array}\right)
$$

Rephasing invariant

$$
\Delta^{(t)} \equiv \operatorname{lm}\left(V_{11} V_{12}^{t} V_{2} V_{21}^{t}\right)=7.6 \times 10^{-8} \mathrm{E}
$$

Θ : One loop level

$$
V_{\mathrm{CKM}}^{\mathrm{L}}
$$

$V_{\mathrm{CKM}}^{\mathrm{Rt}}$

$$
\begin{aligned}
& d_{i} \propto \operatorname{Im}\left(L_{d}\left(Y_{u}\left(M_{u}^{\dagger} M_{u}\right)^{n} M_{u}^{\dagger}+Y_{d}\left(M_{d}^{\dagger} M_{d}\right)^{n} M_{d}^{\dagger}\right) Y_{d} R_{d}^{\dagger}\right)_{i i} \\
&=\operatorname{Im} \operatorname{Tr}\left(\mathbf{L}_{\mathrm{d}} \mathbf{P}_{0} \mathbf{L}_{\mathrm{u}}{ }^{+} \mathbf{L}_{\mathbf{u}} \mathbf{M}_{\mathbf{u}}\left(\mathbf{M}_{\mathrm{u}}{ }^{+} \mathbf{M}_{\mathrm{u}}\right)^{\mathbf{n}} \mathbf{M}_{\mathrm{u}}{ }^{+} \mathbf{L}_{\mathrm{u}} \mathbf{L}_{\mathbf{u}} \mathbf{P}_{0} \mathbf{L}_{\mathrm{d}}{ }^{\mathbf{L}_{\mathrm{d}} \mathbf{M}_{\mathrm{d}} \mathbf{R}_{\mathrm{d}}{ }^{+}}\right. \\
& d_{i} \propto \operatorname{Im}\left(V_{\mathrm{CKM}}^{\dagger} \mu_{u}^{2 n+2} V_{\mathrm{CKM}} \mu_{d}+V_{d d} \mu_{d}^{2 n+2} V_{d d} \mu_{d}\right)_{i i} \quad: 0
\end{aligned}
$$

Vanishes at one loop!

Notice essential to localize \mathbf{R} fields

Would have been one-loop contribution

Conclude

- Flavor very interesting in higher dimensions
- Worthwhile to explore how well we can do
- Many possibilities with bulk and brane fields
- Potentially richer symmetry structure
().Can get natural exponential hierarchy
(). Natural KM angles even with anarchic mixing
() Can use sequestering to address strong CP problem
- For the future: can you apply these ideas to other models
- Explicit geometric or string theoretic realizations?

