

Physics scope of CLIC, a future TeVscale e⁺e⁻ linear collider

Symposium-talk, in honor of Halina Abramowicz's birthday, January 5th 2014

Lucie Linssen, CERN

on behalf of the CLIC detector and physics study Lucie Linssen, symposium Tel Aviv, 5 January 2014

Outline

- Introduction to CLIC accelerator/detectors
- Overall Physics scope and Vs energy staging
- Selected physics subjects:
 - Higgs
 - **Top**
 - Searches for New Physics

Summary

• Introduction to CLIC accelerator/detectors

ILC and CLIC in just a few words

CLIC

Linear e⁺e⁻ colliders Luminosities: few 10³⁴ cm⁻²s⁻¹

ILC

•2-beam acceleration scheme, at room temperature
•Gradient 100 MV/m
•√s up to 3 TeV
•Physics + Detector studies for 350 GeV - 3 TeV

CLIC focus is on energy frontier reach !

Superconducting RF cavities
Gradient 32 MV/m
√s ≤ 500 GeV (1 TeV upgrade option)
Focus on ≤ 500 GeV, physics studies also for 1 TeV

CLIC two-beam acceleration scheme

Two Beam Scheme:

CLIC layout at 3 TeV

Fig. 3.1: Overview of the CLIC layout at $\sqrt{s} = 3$ TeV.

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Hadron vs. lepton colliders

p-p collisions	e ⁺ e ⁻ collisions
 Proton is compound object → Initial state not known event-by-event → Limits achievable precision 	 e⁺/e⁻ are point-like → Initial state well defined (Vs / polarization) → High-precision measurements
Circular colliders feasible	Linear Colliders (avoid synchrotron rad.)
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	 Cleaner experimental environment → trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states

CLIC detector concepts (2)

forward calorimeters **"FCAL"**

Important for:

- Acceptance
- Luminosity measurement
- Beam feedback

details of forward detector region

Compare experiment CLIC \Leftrightarrow LHC

clc

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

•Overlapping beam-induced background:

- •High background rates, medium energies
- High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

•Beam crossings "sporadic"

•No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

Very precise ECAL (CMS)Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- High background rates, high energiesHigh occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)
- •Severe challenge of radiation damage
- •Continuous beam crossings
- Trigger has to achieve huge data reduction

• Overall Physics scope and Vs energy staging

Physics at CLIC

CLIC: e⁺e⁻ collider, staged approach

- 500 fb⁻¹ @ 350 375 GeV : precision Higgs and top physics
- 1.5 ab⁻¹ @ ~1.5 TeV : precision Higgs, precision SUSY, BSM reach, ...
- ~2 ab⁻¹ @ ~ 3 TeV : Higgs self-coupling, precision SUSY, BSM, ... reachExact energies of TeV stages would depend on LHC results

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Physics at CLIC

CLIC: e⁺e⁻ collider, staged approach

- 500 fb⁻¹ @ 350 375 GeV : precision Higgs and top physics
- 1.5 ab⁻¹ @ ~1.5 TeV : precision Higgs, precision SUSY, BSM reach, ...
- ~2 ab⁻¹ @ ~ 3 TeV : Higgs self-coupling, precision SUSY, BSM, ... reachExact energies of TeV stages would depend on LHC results

• Higgs physics

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Higgs physics at CLIC

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Higgs physics at CLIC

Higgs-Strahlung: e⁺e⁻→ZH

- Measure H from Z-recoil mass
- Model-independent meas.: m_{H} , σ
- Yields absolute value of g_{HZZ}

WW fusion: $e^+e^- \rightarrow Hv_ev_e$

- Precise cross-section measurements in ττ, μμ, qq, ... decay modes
- Profits from higher Vs (\gtrsim 350 GeV)

Radiation off top-quarks: $e^+e^- \rightarrow ttH$

- Measure top Yukawa coupling
- Needs √s≥700 GeV

Double-Higgs prod.: $e^+e^- \rightarrow HHv_ev_e$

- Measure tri-linear self coupling
- Needs high vs (\gtrsim 1.4 TeV)

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Double Higgs production

21%

 $\Delta(\lambda)$ for p(e⁻) = 80%

← results

obtained for $m_{\rm H}$ =120 GeV

12%

Summary of Higgs measurements

			Statistical precision			_
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV	_
			$500 {\rm fb}^{-1}$	1.5 ab ⁻¹	$2.0 \mathrm{~ab^{-1}}$	
ZH	Recoil mass distribution	m _H	120 MeV	_	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow invisible)$	Γ_{inv}	tbd	_	_	
ZH	$H \rightarrow b\overline{b}$ mass distribution	m _H	tbd	_	_	
$Hv_e\overline{v}_e$	$H \to b \overline{b}$ mass distribution	m _H	_	40 MeV*	33 MeV*	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_	_
ZH	$\sigma(HZ) \times BR(H \rightarrow b\overline{b})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	$1\%^{\dagger}$	-	_	
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	$5\%^{\dagger}$	-	_	
ZH	$\sigma(HZ) \times BR(H \rightarrow gg)$		$6\%^{\dagger}$	_	-	
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \rightarrow \tau^+ \tau^-)$	$g_{\rm HZZ}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$	5.7%	_	-	
ZH	$\sigma(HZ) \times BR(H \rightarrow WW^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	$2\%^\dagger$	_	_	
ZH	$\sigma(HZ) \times BR(H \rightarrow ZZ^*)$	$g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	tbd	_	_	
$Hv_e\overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow b\overline{b})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	$3\%^{\dagger}$	0.3%	0.2%	To b
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	_	2.9%	2.7%	
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \rightarrow \tau^{+}\tau^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	_	3.7%	tbd	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mu^{+}\mu^{-})$	$g_{\rm HWW}^2 g_{\rm H\mu\mu}^2 / \Gamma_{\rm H}$	_	29%*	16%	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{gg})$		_	15%*	tbd	
$Hv_e \overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow Z\gamma)$		_	tbd	tbd	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	$1.1\%^{*}$	0.8%*	
$Hv_e \overline{v}_e$	$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow ZZ^*)$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	_	3%†	$2\%^{\dagger}$	
He ⁺ e ⁻	$\sigma({\rm He^+e^-}) \times \textit{BR}({\rm H} \rightarrow {\rm b}\overline{\rm b})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^{\dagger}$	
tīH	$\sigma(t\overline{t}H) \times BR(H \rightarrow b\overline{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8%	tbd	-
$HHv_e\overline{v}_e$	$\sigma(HHv_e\overline{v}_e)$	8HHWW	_	7%*	3%*	
$HHv_e\overline{v}_e$	$\sigma(HHv_e\overline{v}_e)$	λ	_	28%	16%	
$HHv_e \overline{v}_e$	with -80% e ⁻ polarization	λ	_	21%	12%	*

Summary of results from detailed Higgs benchmark simulation studies, with fulldetector simulation and overlay of beaminduced backgrounds

http://arxiv.org/abs/1307.5288

To be combined with recent result: $\frac{\Delta(\sigma(HZ) \times BR(Z -> qq))}{\sigma(HZ) \times BR(Z -> qq)} \approx 2.2\%$

Work in progress !

* Preliminary

CLIC Higgs global fits Work in progress !

Model-independent global fits ×

80% electron polarisation assumed above 1 TeV

Parameter	Mea	Measurement precision					
	350 GeV	+	1.4 Te	V + 3.0 TeV			
	$500 {\rm ~fb^{-1}}$	+]	1.5 ab⁻	$+2.0 \text{ ab}^{-1}$			
m _H	120.00 MeV	30.0)0 MeV	V 20.00 MeV			
λ	—	2	1.00%	10.00%			
Γ _H [%]	5.47		4.23	4.11			
<i>g</i> _{HZZ} [%]	1.00		1.00	1.00			
<i>g</i> _{HWW} [%]	1.87		1.05	1.03			
g _{Hbb} [%]	2.06		1.11	1.05			
g _{Hcc} [%]	3.28		1.50	1.26			
<i>g</i> Htt [%]	_		4.15	4.13			
g _{Hττ} [%]	3.55		1.68	1.64			
g _{Ημμ} [%]	_	1	11.03	5.37			
g _{Hgg} [%]	3.67		1.29	1.15			
<i>g</i> _{Ηγγ} [%]	—		5.60	5.59			

- 📩 ~1 % precision on many couplings
 - limited by g_{HZZ} precision

- Constrained "LHC-style" fits
 - Assuming no invisible Higgs decays (model-dependent):

$\kappa_i^2=rac{1}{\Gamma}$	$\frac{\Gamma_i}{ _{SM}}$ Γ	$T_{\rm H,md} = \sum_{i}$	$\kappa_i^2 BR_i$
Parameter	Mea	surement pre	cision
	350 GeV	+ 1.4 TeV	+3.0 TeV
	500 fb^{-1}	$+1.5 \text{ ab}^{-1}$	$+2.0 \text{ ab}^{-1}$
$\Gamma_{\rm H,model}$ [%]	1.62	0.29	0.22
<i>к</i> _{НZZ} [%]	0.45	0.32	0.24
Кнуу [%]	1.53	0.15	0.11

0.33

1.04

1.35

0.79

5.52

sub-% precision for most couplings

1.69

3.07

3.45 3.62

*к*_{Нbb} [%]

*κ*_{Htt} [%]

*к*_{Нττ} [%]

*к*_{Hgg} [%] $\kappa_{\rm Hyy}$ [%]

0.21

0.74

1.31

0.56

5.51

• Top physics

Top physics at CLIC

Exploration of scope for top physics at CLIC is in an early stage:

- Existing studies concentrate on top mass measurements
- Coupling to the Higgs (as part of Higgs studies)

Plans for next studies include:

- Asymmetries to study couplings to γ, Z
- Measurement of couplings to W
- Sensitivity to CP violation
- Flavour-changing top decays
- ...

Results of top benchmark studies

Final result is dominated by systematic errors (theor. normalisation, beam-energy systematics, translation of 1S mass to \overline{MS} scheme) => 100 MeV error on top mass

• CLIC potential for New Physics

Sensitivity to Higgs partners

Higgs multiplet BSM → searches accessible up to √s/2

Example MSSM benchmark study at 3 TeV, 2 ab⁻¹

Multi-jet final states Full simulation studies with background overlay

SUSY => slepton study, 3 TeV

100

80

60

40

20

0

0

500

 $\mu_{R}^{+}+\mu_{R}^{-} \rightarrow \mu^{+}+\mu^{-}+\chi_{1}^{0}+\chi_{1}^{0}$ Fit:S+B(Data)-B(MC), events: 2845

1000

= 341.75 \pm 6.38 , χ^2 / ndf 24.5 /45

smuon

1500

2000

 $M \tilde{u} = 1014.29 \pm 5.57$

Slepton production at CLIC very clean SUSY "model II": slepton masses ~ 1 TeV Channels studied include

$$\begin{array}{l} \bullet \ e^+e^- \rightarrow \tilde{\mu}_R^+\tilde{\mu}_R^- \rightarrow \mu^+\mu^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ \bullet \ e^+e^- \rightarrow \tilde{e}_R^+\tilde{e}_R^- \rightarrow e^+e^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \\ \bullet \ e^+e^- \rightarrow \tilde{\nu}_e\tilde{\nu}_e \rightarrow e^+e^-W^+W^-\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0 \end{array}$$

Leptons and missing energy Masses from analysis of endpoints of energy spectra

gaugino pair production, 3 TeV

Example

SUSY "model II":

$$m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$$
 $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$

Results of SUSY benchmarks

Table 8: Summary table of the CLIC SUSY benchmark analyses results obtained with full-detector simulations with background overlaid. All studies are performed at a center-of-mass energy of 3 TeV (1.4 TeV) and for an integrated luminosity of 2 ab^{-1} (1.5 ab^{-1}) [21, 22, 23, 24, 25, 26, 27].

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty	
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\tilde{\ell} \text{ mass}$ $\tilde{\chi}_1^0 \text{ mass}$	1010.8 340.3	0.6% 1.9%	
3.0	Sleptons	$\widetilde{e}_{p}^{+}\widetilde{e}_{p}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{i}^{0}\widetilde{\chi}_{i}^{0}$	П	$\tilde{\ell}$ mass	1010.8	0.3%	
	$e_{R}e_{R}$ / $e_{L}e_{L}h_{1}h_{1}$			$\widetilde{\chi}_1^0$ mass	340.3	1.0%	
		$\widetilde{\nu}_{a}\widetilde{\nu}_{a} \rightarrow \widetilde{\gamma}_{1}^{0}\widetilde{\gamma}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		ℓ mass	1097.2	0.4%	
				$\widetilde{\chi}_1^{\pm}$ mass	643.2	0.6%	
2.0	Chargino	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} ightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}W^{+}W^{-}$	п	$\widetilde{\chi}_1^{\pm}$ mass	643.2	1.1%	
5.0	Neutralino	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	п	$\widetilde{\chi}_2^0$ mass	643.1	1.5%	
3.0	Squarks	$\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	Ι	\widetilde{q}_{R} mass	1123.7	0.52%	
3.0 Heavy Higgs	$H^0A^0 \rightarrow b\overline{b}b\overline{b}$		H^0/A^0 mass	902.4/902.6	0.3%		
	Heavy Higgs	$H^+H^- \rightarrow t\overline{b}b\overline{t}$	1	H^{\pm} mass	906.3	0.3%	
		~+~- + _~0~0		$\tilde{\ell}$ mass	560.8	0.1%	
		$\mu_{R}^{+}\mu_{R}^{-} \rightarrow \mu^{+}\mu^{-}\chi_{1}^{-}\chi_{1}^{-}$		$\widetilde{\chi}_1^0$ mass	357.8	0.1%	
14	Slantons	$\widetilde{e}^+_R \widetilde{e}^R \to e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$	ш	$\tilde{\ell}$ mass	558.1	0.1%	
1.4	Steptons		ш	$\widetilde{\chi}_1^0$ mass	357.1	0.1%	
		$\widetilde{\mathbf{w}} \widetilde{\mathbf{w}} = \widetilde{\mathbf{w}}^0 \widetilde{\mathbf{w}}^0 \mathbf{a}^+ \mathbf{a}^- \mathbf{w}^+ \mathbf{w}^-$		$\tilde{\ell}$ mass	644.3	2.5%	
		$v_e v_e \rightarrow \chi_1 \chi_1 e^+ e^- w^- w$		$\widetilde{\chi}_1^{\pm}$ mass	487.6	2.7%	
1.4	Stau	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \mathop{\rightarrow} \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%	
1.4	Chargino	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	ш	$\widetilde{\chi}_1^{\pm}$ mass	487	0.2%	
1.4	Neutralino	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	ш	$\widetilde{\chi}_2^0$ mass	487	0.1%	
La	Large part of the SUSY spectrum measured at <1% level						

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Higgs compositeness

Allows to probe Higgs compositeness at the 30 TeV scale for 1 ab⁻¹ at 3 TeV (60 TeV scale if combined with single Higgs production)

Indirect Z' search

Indirect Z' search in $e^+e^- \Rightarrow \mu^+\mu^-$

Fig. 14: 5σ limit for a $M_{Z'}$ discovery as function of the integrated luminosity for different values of the couplings g'_{Y} and g'_{BL} . The limits shown are determined from the combined observables σ and A_{FB} at $\sqrt{s} = 3$ TeV and 1.4 TeV.

CLIC reach for New Physics

			CLIC at 3	TeV	
New particle	LHC (14 TeV)	HL-LHC	CLIC3		
squarks [TeV]	2.5	3	≲1.5	Diroct	observation
sleptons [TeV]	0.3	-	$\lesssim 1.5$	Direct	
Z' (SM couplings) [TeV]	5	7	20		
2 extra dims M _D [TeV]	9	12	20-30		1
TGC (95%) (λ_{γ} coupling)	0.001	0.0006	0.0001	LOOP	/ tive operator
μ contact scale [TeV]	15	-	60	enec	
Higgs composite scale [TeV]	5–7	9-12	70		

Table 10: Discovery reach of various theory models for different colliders [5]. LHC at $\sqrt{s} = 14 \text{ TeV}$ assumes 100 fb⁻¹ of integrated luminosity, while HL-LHC is with 1 ab⁻¹, and CLIC3 is $\sqrt{s} = 3 \text{ TeV}$ with up to 2 ab⁻¹. TGC is short for Triple Gauge Coupling, and " μ contact scale" is short for LL μ contact interaction scale Λ with g = 1.

further reading

- CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-007, <u>https://edms.cern.ch/document/1234244/</u>
- CLIC CDR (#2), Physics and Detectors at CLIC, CERN-2012-003, <u>arXiv:1202.5940</u>
- CLIC CDR (#3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>
- Physics at the CLIC e+e- Linear Collider, Input to the Snowmass process 2013, <u>http://arxiv.org/abs/1307.5288</u>

CLIC strategy and objectives

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2024-25 Construction Start

Ready for full construction and main tunnel excavation.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Commissioning Becoming ready for datataking as the LHC programme reaches

completion.

Country	Partner	Representative in the IB
Australia	Australian Collaboration for Accelerator Science (ACAS)	M. Boland
Belarus	NC PHEP, Belarusian State University, Minsk	K. Afanaciev
Chile	The Pontificia Universidad Católica de Chile, Santiago	M.A. Diaz Gutierrez
Czech Republic	Institute of Physics of the Academy of Sciences of the Czech Republic, Prague	T. Lastovicka
Denmark	Department of Physics and Astronomy, Aarhus University	U. Uggerhoj
France	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy	Y. Karyotakis
Germany	MPI Munich	F. Simon
Israel	Tel Aviv University	A. Levy
Norway	University of Bergen	G. Eigen
Poland	Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow	M. Idzik
Poland	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow	L. Zawiejski
Romania	Institute of Space Science	T. Preda
Serbia	Vinca Institute for Nuclear Sciences, Belgrade	I. Bozovic- Jelisavcic
Spain	Spanish Network for Future Linear Colliders	A. Ruiz
Switzerland	CERN	K. Elsener
United Kingdom	The School of Physics and Astronomy, University of Birmingham	N. Watson
United Kingdom	University of Cambridge	M. Thomson
United Kingdom	University of Glasgow	A. Robson
United Kingdom	University of Oxford	Ph. Burrows
USA	Argonne National Laboratory, High Energy Physics Division	H. Weerts

CLIC detector and physics study

Light-weight cooperation structure No engagements, on best-effort basis With strong collaborative links to ILC http://lcd.web.cern.ch/LCD/Home/MoC.html

CLICdp: 20 institutes

Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimisation for CLIC

Collaboration is also...

Israel 21st CERN member state !

(flag-hoisting - ceremony on 15/1/2014)

Lucie Linssen, symposium Tel Aviv, 5 January 2014

summary

- CLIC is the only mature option for a multi-TeV e⁺e⁻ collider
- Very active R&D projects for accelerator and physics/detector
- Energy staging → optimal physics exploration, with possible stages at 350 GeV, 1.4, and 3 TeV
- CLIC @ 350 GeV
 - Precision Higgs measurements: mass, branching ratios, absolute coupling
 - Top physics (precision on top mass at O(100 MeV))
- CLIC @ 1.4 and 3 TeV
 - Improved precision of many observables and access to rare Higgs decays
 - Trilinear Higgs self-coupling at the 10% level
 - Top Yukawa coupling with ttH
 - Discovery machine for BSM physics at the energy frontier
 - Direct + indirect sensitivity

clc

CLIC => Physics at high energy high altitude

or.....

what happens to a beer at 3842 m altitude ?

SPARE SLIDES

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Fig. 3.5: Simplified upgrade scheme for CLIC staging scenario A. The coloured lines indicate the required movement of the modules from one stage to the next.

CLIC layout at 500 GeV

Fig. 3.2: Overview of the CLIC layout at $\sqrt{s} = 500$ GeV. (scenario A)

Lucie Linssen, symposium Tel Aviv, 5 January 2014

Parameters, scenario A

Table 3.3: Parameters for the CLIC energy stages of scenario A.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	(1400)	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		354	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3
Charge per bunch	Ν	10 ⁹	6.8	3.7	3.7
Bunch length	σ_z	μm	72	44	44
IP beam size	σ_x/σ_y	nm	200/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	2350/20	660/20	660/20
Normalised emittance (IP)	$\varepsilon_x/\varepsilon_y$	nm	2400/25	_	_
Estimated power consumption	Pwall	MW	272	364	589

Parameters, scenario B

Table 3.4: Parameters for the CLIC energy stages of scenario B.

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	(1500)	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n_b		312	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.3	(3.7)	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	pprox 60/1.5	pprox 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25	_	
Estimated power consumption	Pwall	MW	235	364	589

Integrated luminosity

Possible scenarios "A" and "B", these are "just examples"

Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

=> CLIC can provide an evolving and rich physics program over several decades

Lucie Linssen, symposium Tel Aviv, 5 January 2014

CLIC, possible implementation

Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5].

physics aims => detector needs

CLIC_ILD and CLIC_SiD

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

CLIC_ILD

7 m

CLIC_SiD

Lucie Linssen, symposium Tel Aviv, 5 January 2014

CLIC machine environment (1)

	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	Drives timing
#BX / train	312	requirements
Train duration (ns)	156	for CLIC detector
Rep. rate	50 Hz	
σ _x / σ _y (nm)	≈ 45 / 1	very small beam size
σ _z (μm)	44	very sman beam size

Beam related background:

Small beam profile at IP leads very high E-field

γγ to hadrons

CLIC machine environment (2)

Coherent e⁺e⁻ pairs

• 7 x 10⁸ per BX, very forward

Incoherent e⁺e⁻ pairs

• 3 x 10⁵ per BX, rather forward

$\gamma\gamma \rightarrow$ hadrons

- 3.2 events per BX
- main background in calorimeters
 - ~19 TeV in HCAL per bunch train

Simplified view: **Pair background**

Design issue (high occupancies)

$\gamma\gamma \rightarrow hadrons$

- Impacts on the physics
- Needs suppression in data

Lucie Linssen, symposium Tel Aviv, 5 January 2014

combined p_T and timing cuts

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight cuts

Higgs Decay Processes

- SM Higgs branching ratios depend only on the Higgs mass
- 125 GeV Higgs has sizable branching ratios to large number of final states
 - $H \rightarrow b\overline{b}$: 58%
 - $H \rightarrow WW^*$: 22%
 - $H \rightarrow gg: 8.5\%$
 - $H \rightarrow \tau^+ \tau^-$: 6.4%
 - $H \rightarrow ZZ^*$: 2.7%
 - $H \rightarrow c\overline{c}$: 2.7%
 - $H \rightarrow \gamma \gamma$: 0.23%
 - $H \rightarrow Z\gamma$: 0.15%
 - $H \rightarrow \mu^+ \mu^-$: 0.022%
- Measuring all these decay channels is excellent test of Standard Model

clc

European Strategy statements => high-energy frontier

2006 statement "4":

4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; *a coordinated programme should be intensified, to develop the CLIC bechnology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.*

proton-proton or electron-positron

at high-energy frontier

2013 statement "d":

d) To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update, when physics results from the LHC running at 14 TeV will be available. CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including mgh-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

FCC and CLIC at energy frontier

CLIC collaboration(s)

Accelerator + Detector collaboration

Entity	IB chair	Spokesperson	# institutes		
CLIC/CTF3 collaboration	L. Rivkin (EPFL)	R. Corsini (CERN)	~50		
CLIC detector & physics study	F. Simon (MPI Münich)	L. Linssen (CERN)	20		
Within the CERN structure: Linear Collider study leader => S. Stapnes					