

Symposium on Future Prospects in High Energy Physics

January 5, 2014, Tel Aviv University, Israel

Diffraction at HERA

Claudia Glasman Universidad Autónoma de Madrid

Introduction

 According to Regge theory, the high-energy behaviour of an elastic hadron-scattering amplitude is controlled by a sequence of Regge

trajectories corresponding to the

 Ingelman and Schlein suggested in 1985 that the pomeron may have a partonic structure which could be probed in hard diffractive dissociation

Introduction

- ullet UAB reported in 1985 the measurement of high E_T jets in diffractively produced high-mass systems
 - → strong evidence for the hard scattering originating from partons within the pomeron
- The concept of pomeron structure functions has been studied in terms of pQCD since 1983
- The pomeron structure can be probed unambiguously in virtual-photon exchange at HERA

 The experimental signature of a pomeron exchange would consist of a quasi-elastically scattered proton, well separated in rapidity ("rapidity gap") from the remaining hadronic system

Experimental signature for diffraction at HERA

A large rapidity gap or a fast-forward proton in diffractive events at HERA

• In 1993, a class of DIS events was observed in which the hadronic energy deposit class to the proton beam direction was at a large angle

• The events exhibited a sizuable difference between the pseudorapidity of the smallest detector angle ($\eta = 4.3$) and the pseudorapidity of the hadrons observed closest to the proton direction

• max: maximum pseudorapidity of all calorimeter clusters in an event

- A clear excess of events is observed for η_{max} < 1.5
 → "large rapidity gap" events
- Rapidity distribution of diffractive recoiling state expected to be constant

 These "large rapidity gap" events are not accounted for by standard QCD-inspired fragmentation models and their characteristics are compatible with those expected from diffractive dissociation involving pomeron exchange
 ZEUS Collab, PLB 315 (1993) 481

 $ullet \ Q^2$ distribution for events with $\eta_{
m max} < 1.5$ in two regions of x:

- ullet The fraction of events with a large rapidity gap shows a weak dependence with Q^2
 - → indication of a leading-twist contribution to the proton structure function

ZEUS Collab, PLB 315 (1993) 481

ullet Jet production in DIS and PHP for events with $\eta_{
m max}\!<\!1.5$:

 The natural interpretation of the observation of these events is the hard interaction of the virtual and real photon with a colourless object with partonic structure inside the proton: the pomeron

ZEUS Collab, PLB 332 (1994) 228

ZEUS Collab, PLB 346 (1995) 399

Kinematics of (diffractive) events in DIS

$$e(k) + p(P) \rightarrow e'(k') + X$$
 $e(k) + p(P) \rightarrow e'(k') + p'(P') + X$

$$Q^2 = -q^2 = -(k - k')^2$$
 $x = \frac{Q^2}{2P \cdot q}$
 $x_{I\!\!P} = \frac{(P - P') \cdot q}{P \cdot q}$
 $y = \frac{P \cdot q}{P \cdot k}$
 $\beta = \frac{Q^2}{2(P - P') \cdot q}$
 $W^2 = (q + P)^2 = \frac{Q^2(1 - x)}{x} + M_p^2$
 $t = (P - P')^2$

$$egin{align} x_{I\!\!P} &= rac{(P-P').q}{P.q} \ eta &= rac{Q^2}{2(P-P')\cdot q} = rac{x}{x_{I\!\!P}} \ t &= (P-P')^2 \ \end{pmatrix}$$

Diffractive structure function

- Soft hadron-hadron data via pomeron exchange can be described by a pomeron-hadron coupling and a pomeron propagator
 - \Rightarrow in this picture, the pomeron can be treated as a quasi-real particle emitted by the hadron and described in terms of a parton density characterised by a structure function, $F_2^{IP}(\beta, Q^2)$
- For unpolarised beams, the differential cross section for single diffractive dissociation is given by:

$$\frac{d^4\sigma_{\rm diff}}{d\beta dQ^2 dx_{I\!\!P} dt} = \frac{2\pi\alpha^2}{\beta Q^4} [(1 + (1-y)^2)F_2^{D(4)} - y^2F_L^{D(4)}]$$

where, assuming factorisation,

$$F_2^{D(4)}(eta,Q^2,x_{I\!\!P},t)\!=\!f_{I\!\!P}(x_{I\!\!P},t)\!\cdot\!F_2^{I\!\!P}(eta,Q^2)$$

and $f_{I\!\!P}$ is the pomeron flux factor

Integrating over t,

$$\frac{d^3\sigma_{\text{diff}}}{d\beta dQ^2 dx_{I\!\!P}} = \frac{2\pi\alpha^2}{\beta Q^4} [1 + (1-y)^2] F_2^{D(3)}(\beta, Q^2, x_{I\!\!P})$$

First measurement of the diffractive structure function at HERA

ullet $F_2^{D(3)}(eta,Q^2,x_{I\!\!P})$ measured in the kinematic range:

$$\begin{vmatrix} 0.08 < y < 0.5 \\ 8 < Q^2 < 100 \text{ GeV}^2 \\ 6.3 \cdot 10^{-4} < x_{I\!\!P} < 10^{-2} \\ 0.1 < \beta < 0.8 \end{vmatrix}$$

- Data fall rapidly with increasing $x_{I\!\!P}$
- Dependence of $F_2^{D(3)}$ on Q^2 at fixed β is weak \rightarrow consistent with hard interaction between the virtual photon and point-like constituents within the pomeron

- a pomeron flux factor and a pomeron structure function
- \to the $x_{I\!\!P}$ dependence is consistent with the form $(1/x_{I\!\!P})^a$ with $a=1.30^{+0.11}_{-0.16}$ for all β and Q^2 regions

ZEUS Collab, Z Phys C68 (1995) 569

First measurement of the diffractive structure function at HERA

• Integrating $F_2^{D(3)}$ over $x_{I\!\!P}$ (universal $x_{I\!\!P}$ dependence assumed, taken from fit) in all β and Q^2 regions:

- Events characterised by the diffractive dissociation of virtual photons, $\gamma^* p \to X p$, constitute $\approx 10\%$ of the visible DIS cross section
- The extracted $\tilde{F}_2^D(\beta,Q^2)$ values are consistent with a flat β dependence for fixed Q^2 and are approximately independent of Q^2 for all β values

⇒ Picture consistent with the scattering of a virtual photon off point-like quarks within the pomeron

ZEUS Collab, Z Phys C68 (1995) 569

First determination of pomeron PDFs at HERA

• Fits to $F_2^{D(3)}$: $F_2^{D(3)}=(1/x_{I\!\!P})^a\cdot b\cdot [\beta(1-\beta)+\tfrac{c}{2}\cdot (1-\beta)$ with a=1.30, assuming factorisation and no Q^2 dependence,

 $(1-\beta)^2$: soft contribution

Results:

$$b = 0.018 \pm 0.001 (\text{stat}) \pm 0.005 (\text{syst})$$

 $c = 0.57 \pm 0.12 (\text{stat}) \pm 0.22 (\text{syst})$

 The β-dependence of the pomeron structure function requires both a hard and a soft component

 It was also determined that the quarks within the pomeron do not saturate the momentum sum rule: gluon component needed!

Diffractive picture starting to emerge...

- ullet Observed Q^2 dependence indicative of a point-like nature of the interaction and a leading-twist mechanism
- Measurements consistent with a diffractive structure function which factorises into a pomeron flux factor (x_{IP}) and a pomeron structure function $(Q^2 \text{ and } \beta)$
- The pomeron structure function scales with Q^2 and β
- Quarks within the pomeron do not saturate the momentum sum rule and indications of scaling violations point to a sizeable gluon component
- At LO QCD, diffractive DIS probes only the quark content of the pomeron:
 - \rightarrow are the parton densities universal?
 - → what fraction of the pomeron momentum is carried by quarks and gluons?
 - \rightarrow does a momentum sum rule apply to the pomeron?
- Study reactions sensitive to the quark and gluon content of the pomeron:
 - → jet production in DIS and photoproduction

Jet production in diffractive events

$$\sigma = \int dy f_{\gamma/e}(y) \int \int dx_{I\!\!P} dt f_{I\!\!P/p}(x_{I\!\!P}, t)$$

$$\sum_{i} \int d\beta \sum_{j,k} \int d\hat{p}_{T}^{2} \frac{d\hat{\sigma}_{i+\gamma \to j+k}}{d\hat{p}_{T}^{2}} (\hat{s}, \hat{p}_{T}^{2}, \mu^{2}) f_{i/I\!\!P}(\beta, \mu^{2})$$

• Some possible parameterisations:

 $\begin{array}{l} \rightarrow \text{ hard gluon density: } \beta f_{g/I\!\!P}(\beta,\mu^2) = 6\beta(1-\beta) \\ \rightarrow \text{ soft gluon density: } \beta f_{g/I\!\!P}(\beta,\mu^2) = 6(1-\beta)^5 \\ \rightarrow \text{ hard quark density: } \beta f_{q/I\!\!P}(\beta,\mu^2) = \frac{6}{4}\beta(1-\beta) \end{array}$

normalised such that all of the pomeron momentum is carried by those partons: $\Sigma_{I\!\!P}(\mu^2) \equiv \int_0^1 d\beta \sum_i \beta f_{i/I\!\!P}(\beta,\mu^2) = 1$, and assuming momentum sum rule

• The Donnachie-Landshoff pomeron flux factor was assumed:

$$f_{I\!\!P/p}(x_{I\!\!P},t)=rac{9b_0^2}{4\pi^2}F_1(t)^2x_{I\!\!P}^{1-2lpha(t)}$$
 with $b_0\simeq 1.8$ GeV $^{-1}$ and $lpha(t)=1.085+0.25t$

Jet cross sections in diffractive events at HERA

$$Q^2\!pprox\!10^{-3}$$
 GeV 2 , $130 < W < 270$ GeV, $\eta_{
m max} < 1.8$ (GAP) and $M_Y < 4$ GeV

- ullet At least one jet (cone algorithm) with $E_T^{
 m jet}\!>\!8$ GeV and $-1\!<\!\eta^{
 m jet}\!<\!1$
- Comparison to predictions (assuming $\Sigma_{IP} = 1$):
 - The non-diffractive contribution does not reproduce the measurements
 - → The shape of the data is well (not) reproduced by a hard (soft) parton density
 - → The calculations based on a hard quark (soft gluon) density are smaller than the data by factors 3-10 (20-50)
 - → The calculations based on a hard gluon density describe the data well
 - ⇒ Dominance of hard gluon component

First direct evidence of the gluon content of the pomeron

- The quark and gluon contributions to the pomeron PDFs were extracted from the data (jet cross section in PHP + $F_2^{D(3)}$ in DIS):
 - → after subtracting double-dissociation and non-diffractive contributions
 - → the DL flux factor was assumed
 - ightarrow hard gluon (6eta(1-eta)) and hard quark ($rac{6}{4}eta(1-eta)$) densities were considered, with fractions c_g for gluons and $c_q=1-c_g$ for quarks
 - ightarrow the overall normalisation $\Sigma_{I\!\!P}$ was left as a free parameter
- Results:
 - ightarrow from jet data alone: $1.4 < \Sigma_{I\!\!P} < 3.8$ for $c_q = 0$ and $0.3 < \Sigma_{I\!\!P} < 0.9$ for $c_q = 1$
 - ightarrow from DIS data alone: $\Sigma_{I\!\!P} \cdot (1-c_g) = 0.32$ (0.40) for two (three) flavours
 - \Rightarrow From the combined constraints: $0.4 < \Sigma_{I\!\!P} < 1.6$ and $0.3 < c_g < 0.8$
- ⇒ Between 30-80% of the momentum of the pomeron carried by partons is due to hard gluons, independently of the normalisation of the pomeron flux and assumptions on the momentum sum rule

ZEUS Collab, PLB 356 (1995) 129

$$rac{d^3 \sigma_{
m diff}}{deta dQ^2 dx_{I\!\!P}} = rac{2\pilpha^2}{eta Q^4} [1 + (1-y)^2] \sigma_r^{D(3)}(eta,Q^2,x_{I\!\!P})$$

and diffractive DIS dijet data were used to constrain the quark and gluon parton densities and to extract the DPDFs

- The QCD factorisation theorem was assumed for the diffractive structure functions and the DGLAP evolution equations were used to obtain the scale dependence of the DPDFs
- ullet The DPDFs were modelled at the starting scale $Q_0^2=1.8~{
 m GeV}^2$ in terms of quark singlet, $f_+=\sum_q (f_q+f_{ar q})$, and gluon, f_g

$$zf_{d,u,s}(z,Q_0^2) = A_q z^{B_q} (1-z)^{C_q} \cdot D$$

 $zf_q(z,Q_0^2) = A_q z^{B_g} (1-z)^{C_g} \cdot D$

with $D=e^{-0.001/(1-z)}$, $f_{\bar q}=f_q$, $f_u=f_d=f_s$, heavy quarks generated dynamically; **z**: longitudinal momentum fraction of the parton entering the hard subprocess relative to the diffractive exchange

$$f_{I\!\!P,I\!\!R}(x_{I\!\!P},t) = rac{A_{I\!\!P,I\!\!R}e^{B_{I\!\!P,I\!\!R}t}}{x_{I\!\!P}^{2lpha_{I\!\!P,I\!\!R}(t)-1}}$$

with linear trajectories $\alpha_{IP,IR}(t) = \alpha_{IP,IR}(0) + \alpha'_{IP,IR}t$; the normalisation $A_{I\!\!P}$ was absorbed in $A_{q,q}$; the reggeon parton densities were taken from fits to pion data

- In total, 9 parameters were left free in the fits: $A_{q,q}$, $B_{q,q}$, $C_{q,q}$, the pomeron and reggeon intercepts $\alpha_{I\!\!P}(0)$ and $\alpha_{I\!\!R}(0)$, and the normalisation of the reggeon term, A_{IR}
- Data:

LRG data:

$$-40\!<\!W\!<\!240~{
m GeV}$$

$$-2(5)\!<\!Q^2\!<\!305~{
m GeV}^2$$

$$-2\!<\!M_X\!<\!25~{\sf GeV}$$
 $-2\!<\!M_X\!<\!40~{\sf GeV}$

$$-0.0002 < x_{IP} < 0.02$$

LPS data:

$$-40\!<\!W\!<\!240~{
m GeV}$$

$$-2\!<\!M_X\!<\!40~{
m GeV}$$

$$-0.0002 < x_{I\!\!P} < 0.02 \qquad -0.002(0.02) < x_{I\!\!P} < 0.1$$

Jet data:

$$E-E_T^{
m jet}\!>\!4$$
 GeV

$$-x_{I\!\!P} < 0.03$$

- Fits to LRG+LPS data:
 - "Standard" with $A_g,\,B_g$ and C_g as free parameters
 - "Constant" with $B_g\!=\!C_g\!=\!0$

• Inclusive data sensitive to quark parameters (A_q, B_q) and C_q , but show little sensitivity to gluon shape (B_g) and C_g since $F_2^{D(3)}$ is directly sensitive only to quarks

- Fits to LRG+LPS data:
 - "Standard" with $A_g,\,B_g$ and C_g as free parameters
 - "Constant" with $B_g = C_g = 0$

 Fits S and C are of equally good quality and the predicted reduced cross sections are indistinguishable

- "Standard" with $A_g,\,B_g$ and C_g as free parameters
- "Constant" with $B_g = C_g = 0$
- Both data samples are well described by the fits
- ullet For $Q^2 < 5$ GeV 2 , the predictions are extrapolated and underestimate the LRG and LPS data for $x_{I\!P} < 0.005$
- The fit is above the LPS data in the low-β region, where there are no LRG data

Quark and gluon densities from fits S and C:

- The quark distributions are very similar for the two fits while the gluon densities are significantly different
 - ightarrow gluons from fit S grow rapidly at high z, while those from fit C vanish as z
 ightarrow 1 in a smoother way: poor sensitivity of inclusive data to gluons
- \Rightarrow To constrain the gluons, a more exclusive process is needed where γg fusior contributes at leading order ZEUS Collab, NPB 831 (2010) 1

- Comparison of fits S and C to diffractive dijet DIS data:
 - ightarrow at high $z_{I\!\!P}^{
 m obs}$, the predictions based on fit C (5) (1215 to) describe the data
 - → diffractive dijet DIS data are sensitive to the glon density

- Fit SJ, including LRG+LPS+dijet data:
 - → predictions based on fit SJ cannot be distinguished from fits S and C when compared to inclusive data
 - → predictions based on fit SJ give a very good description of dijet data

ZEUS Collab, NPB 831 (2010) 1

Quark and gluon densities from fit SJ, compared to fit C:

- Sizeable decrease in the uncertainty on the gluon distribution wrt the fits without jet data
- ullet Combining inclusive and dijet data constrains the gluon and quark densities with compararable precision across the whole z range

- Q^2 dependence of the fraction of the longitudinal momentum of the diffractive exchange carried by gluons from fit SJ (integrated over $10^{-5} < z < 1$):
- The fraction amounts to pprox 60% for $5 < Q^2 < 300~{
 m GeV}^2$
- ullet The fall with Q^2 is a direct consequence of the DGLAP evolution, which forces g_{frac} to approach pprox 0.5 at high Q^2
- The slope change at $Q=m_b$ reflects the change in the number of active flavours $(4 \rightarrow 5)$

ullet Comparison of predictions based on fit SJ to charm contribution to $F_2^{D(3)}$:

 Comparison of predictions based on fit SJ to diffractive dijet photoproduction data provides a test of QCD factorisation:

ullet For resolved processes ($x_\gamma^{
m obs} < 1$), as in hadron-hadron interactions, QCD factorisation is not expected to hold

- Adequate description of data
 - ⇒ results compatible with no suppression either of the resolved component or of both components globally

ZEUS Collab, NPB 831 (2010) 1

Conclusions

- Post-HERA picture of diffraction in QCD:
 - → Observation of events with a large rapidity gap
 - stpprox 10% of DIS events are diffractive
 - leading-twist contribution to the proton structure function
 - → Observation of jet production in events with a large rapidity gap
 - hard interaction between photons and point-like constituents within the pomeron
 - → Measurement of pomeron structure function
 - assumption of factorisation into a pomeron flux factor and a pomeron structure function holds
 - hard and soft quark and gluon contributions needed
 - → Measurement of jet cross sections
 - * first direct evidence of gluon component: hard gluons carry 30-80% of pomeron momentum carried by partons
 - → Extraction of pomeron parton densities
 - * fits to LRG+LPS+dijet DIS data provide quark and gluon densities for the pomeron with comparable precision across the whole z range
 - predictions describe other data and provide test of QCD factorisation