Neutirino oscillations, today and tomorrow

Ewa Rondio
National Centre for Nuclear Research Warsaw, Poland

Future Prospects in High Energy Physics

Symposium in honor of the $60^{\text {th }}$ birthday of Halina Abramowicz
Tel Aviv University, January 5, 2014

understanding neutininos?

- From sources to detectors (and in between)

- Neutrino oscillation was a surprise in 1990,
- now it is well established phenomenon and a lot of efforts are made to determine its parameters
- In future it can be a tool for
- beyond SM effects
- CP violation mechanism
- Understanding matter-antimatter asymmetry

Neutirino oscillations - pictiure as of today

FLAYOR

PMNS mixing matrix
MASS
$\left(\begin{array}{l}v_{e} \\ \nu_{\mu} \\ v_{\tau}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i \delta} & 0 & \cos \theta_{13}\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{12} & \sin \theta_{12} & 0 \\ \sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$

„atmospheric" SK, K2K, T2K, MINOS

$\Delta m_{31}^{2}=\left\{\begin{array}{c}2.53_{-0.10}^{+0.08} \\ -\left(2.40_{-0.07}^{+0.10}\right)\end{array} \times 10^{-3} \mathrm{eV}^{2}\right.$
CHOOZ,
DayaBay,
Reno,
DblChooz,
T2K
$\theta_{12}=34^{\circ} \pm 1^{\circ}$
$\theta_{23}=40^{\circ}+5^{\circ} /-2^{\circ}$
$\theta_{13}=9.1^{\circ} \pm 0.6^{\circ}$!

Based on PDG 2012
mixing angles, squared mass differences, CP violation phase - fundamental parameters of nature

* $\Delta \mathrm{m}_{\mathrm{ji}}=\mathrm{m}_{\mathrm{j}}{ }^{2}-\mathrm{m}_{\mathrm{i}}{ }^{2}$

Two free parameters for the three $\Delta \mathrm{m}^{2}{ }^{\prime} \mathrm{s}$. $\left(\Delta \mathrm{m}^{2}{ }_{31}=\Delta \mathrm{m}^{2}{ }_{21}+\Delta \mathrm{m}_{32}{ }_{32}\right)$

\ldots and ways of measuring θ_{13}

- dissappearance -> reactor experiments

$$
\longrightarrow P_{\mathrm{sur}} \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.267 \Delta m_{31}^{2} L / E\right)
$$

$$
\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}
$$

Energy ~ a few MeV

Distance ~ a few km

- appearance -> long-baseline experiments with v_{μ} beam

$P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(1.27 \Delta m_{23}{ }^{2} L / E\right)$
Second order terms depend on $\bar{\delta}$ and mass hierarchy
Energy ~ a few GeV
Distance ~ a few hundred km

Daya Bay experiment

860 m．w．en The Daya Bay Experiment

6 圈 2.9

Far Hall

1615 m from Ling Ao I 1985 m from Daya Bay X 350 m overburden

Daya Bay，China

Reactor（ $\sim 1 \mathrm{~km}$ ）

－ 3 Underground xy Experimental Halls

－17．4 GW th power
－ 8 operating detectors
－ 160 t total target mass

Dàyà Bay（大亚湾）and Lǐng ào（岭澳）nuclear power plants

Daya Bay: detection mechanism

- Gadolinium-doped liquid scintillator (Gd-LS)
- Inverse beta decay
- prompt signal: positron (its energy is correlated with neutrino energy)
- delayed signal: neutron capture
- Systematic error minimisation:
- Identical far and near detectors
- Identical detection modules
- Good background rejection (3-zone modules, water system, RPCs)

Daya Bay: detection modules

- 3-zone detection modules immersed in water, shielded by RPC plane
- target - 20 t of Gd-LS ($0.1 \% \mathrm{Gd)}$
- gamma catcher - 21t of LS
- radiation shield -37 t of mineral oil
- 192 8inch photomultipliers on the walls (scintillation light detectors)
- 3 calibration modules

Muon water system

- Cherenkov water shield at least 2.5 m in every direction, 1200/1950t of water in two separated vessels, each equipped with photomultipliers

Detects muons that can produce spallation neutrons, attenuates gamma rays from

Two-zone ultrapure water Cherenkov detector

Resuliss: rate only

Time variations: flux prediction + detector MC vs data in the three stations

Far to near ratio:

$$
R=0.944 \pm 0.007 \text { (stat.) } \pm 0.003 \text { (syst.) }
$$

Best fit, assuming $\Delta m_{31}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$

$$
\sin ^{2} 2 \theta_{13}=0.089 \pm 0.010 \text { (stat.) } \pm 0.005 \text { (syst.) }
$$

No oscillations excluded at the level of
Results: Chinese Physics C37:011001 (2013), new shape analysis: see Soeren Jetter's slides, NuFact 2013

Accelerator experiments:丁2K

- Tokai2Kamioka: long baseline experiment with narrow-band beam
- Neutrinos produced in J-PARC laboratory in Tokai (30 GeV proton beam hits a graphite target)
- Near detector 280 m from the production point measures nonoscillated beam
- Far detector - Super-Kamiokande, large water Cherenkov detector in Kamioka mine studies effects of oscillations

Main goal: neutrino oscillation studies muon neutrino dissapearance electron neutrino appearance

$$
P\left(v_{\mu} \rightarrow v_{\mu}\right)=1-\sin ^{2} 2 \theta_{23} \cos ^{4} \theta_{13} \sin ^{2}\left(1.27 \Delta m_{2}^{2} L / E\right)-P\left(v_{\mu} \rightarrow v_{e}\right)
$$

$P\left(v_{\mu} \rightarrow v_{e}\right)=\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(1.27 \Delta m_{23}{ }^{2} L / E\right)$

Proton beam hits the target, produces hadrons, mainly pions
The pions decay:
Beam contamination:
Detectors positioned off-axis to get
favorable spectrum shape

$$
\begin{aligned}
\pi^{+} \rightarrow \mu^{+} & +\nu_{\mu} \\
\mu^{+} & \rightarrow e^{+} \bar{v}_{\mu} \nu_{e} \\
K^{+} & \rightarrow \pi^{0} e^{+} v_{e}
\end{aligned}
$$

Hadron production measured with target replica in NA61 experiment for better predictions of neutrino flux

Oscillation analysis constraints

Far detector (Super-K) prediction

Improvements for 2013 results:

- Measurements from NA61 and implementation in beam MC
- From T2K near detector constraints for QE, 1T and other (multi it)
- Improvements on cross section uncertainties (other experiments)

T2K: Super-Kamiokende

Good muon/electron separation

Large water Cherenkov detector

50 kton of water, 22.5 kton fiducial volume, $\geqslant 11,000$ photomultipliers on the walls observe Cherenkov light

Many years of experience, very well known detection technique, systematic errors known and understood

Studies also atmospheric, solar neutrinos

$\mathrm{v}_{\mathrm{e}}+n \rightarrow \mathrm{e}+p$

T2K, 2013 results

- Neutrino oscillation parameters extracted in two ways:
- using reconstructed neutrino energy distribution
- using observed electron momentum and angle
- 28 events observed
- for $\sin ^{2} 2 \theta_{13}=0.1, \sin ^{2} 2 \theta_{23}=1$, $\delta=0$ we would see 20.4 ± 1.8 events
- expected background 4.64 ± 0.53

Reconstructed neutrino energy (MeV)

T2k: 2013 resulis

- Electron neutrino appearance result - 2012 update
- new data (run 4)
- new SK reconstruction algorithm (fiTQun), better π^{0} background rejection
- near detector CC inclusive measurement improved by using new event categories
- Best fit results for $\delta=0$ (68% C.L. error)
- normal hierarchy
- inverted hierarchy
$\frac{\sin ^{2} 2 \theta_{13}=0.150_{-0.034}^{+0.039}}{\sin ^{2} 2 \theta_{13}=0.182_{-0.040}^{+0.046}}$
- 7.50 significance for non-zero θ_{13}

First ever observation (>50) of an explicit v appearance channel!

NOTE: These are 1D contours for various value of $\delta_{\text {cp }}$, not 2D contours

T2K: θ_{23} uncertaintity and reactor

 resulis- v_{e} appearance contours depend on the value of θ_{23}
- This needs to be determined more precisely by studying V_{μ} dissapearance

$$
P\left(v_{\mu} \rightarrow v_{e}\right) \approx \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2}\left(1.27 \Delta m_{23}^{2} L / E\right)
$$

$$
P\left(v_{\mu} \rightarrow v_{\mu}\right) \approx 1-\sin ^{2} 2 \theta_{23} \cos ^{4} \theta_{13} \sin ^{2}\left(1.27 \Delta m_{23}^{2} L / E\right)
$$

Comparison with reactor results (PDG2012):

$$
\sin ^{2} 2 \theta_{13}=0.098 \pm 0.013
$$

Acceleratior expst MINOS

- LB (735km) experiment in USA, started in 2005
- NuMI beam from FermiLab - mainly muon (anti)neutrinos
- Near detector in FermiLab, far detector in Soudan mine (3.8kT fiducial) magnetized tracking calorimeters
- Neutrino (10.6* 10^{20} POT) and antineutrino (3.3* 10^{20} POT) beam data collected

θ_{13} measurement:

$$
2 \sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\theta_{23}\right)=0.093_{-0.049}^{+0.054}
$$

Global summary of θ_{13} measurements

Accelerator

Experiments*

- Normal

Hierarchy
-- Inverted Hierarchy
*All results assuming: $\delta_{\mathrm{CP}}=0$,
$\theta_{23}=45^{\circ}$
Reactor
Experiments

- Rate only
- Rate+Spectral
- n-Gd
--- n-H
$\sin ^{2} 2 \theta_{13}$

Solar+KamLand	$[1106.6028]$
MINOS	$[1108.0015]$
T2K 6 Events	$[1106.2822]$
DC 101 Days	$[1112.6353]$
Daya Bay 55 Days	$[1203.1669]$
RENO 229 Days	$[1204.0626]$
T2K 11 Events	$[$ ICHEP2012]
DC 228 Days	$[1207.6632]$
Daya Bay 139 Days	$[1210.6327]$
DC n-H Analysis	$[1301.2948]$
RENO 416 Days	$[$ NuTel2013]
T2K 11 Events	$[1304.0841]$
DC RRM Analysis	$[1305.2734]$
T2K 28 Events	$[$ EPS2013]

Daya Bay 217 Days New Daya Bay Result $\sin ^{2} 2 \theta_{13}=0.090_{-0.009}^{+0.008}$

questions we'd like to ask

- What is the neutrino mass ordering (hierarchy)
- Is there a CP violation in neutrino sector?
- Are there only three neutrino types?
- What are the exact values of neutrino mixing parameters?

... and for non-oscillation experiments:
- Are neutrinos Majorana or Dirac?
-What is the absolute scale of masses?

Whatis next?

$$
\begin{gathered}
\text { Unknown } \\
\delta \neq 0, \pi ? \\
m_{3} \gtrless m_{2} ? \\
\theta_{23} \gtreqless 45^{\circ} ?
\end{gathered}
$$

CPV
Differences in neutrino vs antineutrino oscillation probabilities

Changes the contribution from matter effects (important for neutrinos travelling through dense matter e.g through Earth)

Additional source of degeneracies

Measurement strategies (for LBL):
An unknown hierarchy usually leads to a reduced ability to observe CP violation

- Looking for appearance

$$
P\left(v_{\mu} \rightarrow v_{e}\right) \text { vs. } P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)
$$

- The longer the baseline the better (matter effects!)
- Study more than one oscillation maximum to disentangle the effects

CPV and MF

- In long baseline neutrino experiments
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=4 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \sin ^{2} \Delta_{31} \quad$ leading term
CP conserving

$$
+8 C_{13}^{2} S_{12} S_{13} S_{23}\left(C_{12} C_{23} \cos \delta-S_{12} S_{13} S_{23}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}
$$

$-8 C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \cdot \sin \Delta_{32} \cdot \sin \Delta_{31} \cdot \sin \Delta_{21}$ CP violating
$+4 S_{12}^{2} C_{13}^{2}\left(C_{12}^{2} C_{23}^{2}+S_{12}^{2} S_{23}^{2} S_{13}^{2}-2 C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right) \cdot \sin ^{2} \Delta_{21}$

$$
\begin{gathered}
-8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \cdot \frac{a L}{4 E_{\nu}}\left(1-2 S_{13}^{2}\right) \cdot \cos \Delta_{32} \cdot \sin \Delta_{31} \\
+8 C_{13}^{2} S_{13}^{2} S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}\left(1-2 S_{13}^{2}\right) \cdot \sin ^{2} \Delta_{31},
\end{gathered} \text { matter effects }
$$

Hints from current resulis

- We definitely need new experiments

New player: NOVA

- Neutrinos from NuMI beam, 810 km long baseline
- An off-axis detector layout (14 mrad), beam max energy ~2GeV
- Will measure $\mathrm{v}_{\mu}->\mathrm{v}_{\mathrm{e}}$, nu as well as antinu runs
- Hopes to determine MH and octant, constrain $\bar{\delta}_{\mathrm{cp}}$

Fine grained and highly active tracking calorimeters
Plastic extrusions filled with liquic scintillator

- Light captured by a fiber and reac by an APD

- First kiloton intrumented by the end of May 2013, completion expected by May 2014
- The beam has just started operation

1 and 2σ Contours for Starred Point

Expected sensifivitiy

δ_{CP} Sensitivity

NOvA CPV determination, $3+3 \mathrm{yr}$ $\sin ^{2} 2 \theta_{13}=0.095, \sin ^{2} 2 \theta_{22}=1.00$

NOvA CPV determination, 3+3 yr

NOvA CPV determination, $3+3 \mathrm{yr}$
$\sin ^{2} 2 \theta_{13}=0.095, \sin ^{2} 2 \theta_{23}=1.00$ + T2K at 5.5×10^{21} POT

NOvA CPV determination, $3+3 \mathrm{yr}$

Mass Hierarchy Sensitivity

NOvA hierarchy resolution, $3+3 \mathrm{yr}$
$5 \sin ^{2} 2 \theta_{19}=0.095, \sin ^{2} 2 \theta_{29}=1.00$

NOvA hierarchy resolution, $3+3 \mathrm{yr}$

NOvA hierarchy resolution, 3+3 yr
$\sin ^{2} 2 \theta_{13}=0.095, \sin ^{2} 2 \theta_{29}=1.00$

+ T2K at 5.5×10^{21} POT

NOvA hierarchy resolution, $3+3 \mathrm{yr}$

Long Baseline Future

Sterile neutrinos were hypothesized in a paper by Pontecorvo in 1957

- Maybe we need at least one additional neutrino type to explain some anomalous results from experiments?
- Short baseline experiments (LSND, MiniBoone)
- Reactor neutrino anomaly

Hints
for more that 3 neutrinos also from astrophysics

Sterile neutirinos?

Several proposal to search for them

- Short baseline experiment on $\sim \mathrm{GeV}$ beam with LAr detector
- Very short base line with radioactive sources (even with source inside detector)

CeLAND (KamLAND) SOX (Borexino)

Gonnection with astroparticle physics \rightarrow IceCube

- IceCube
- $1 \mathrm{~km}^{3}$ of instrumented ice
- DeepCore - a dense core of IceCube in the deepest, clearest ice

DeepCore string $+35 \%$ QE, 7 m separation

IceCube string, 17 m
\rightarrow a Cherenkov detector - which can reconstruct direction of neutrinos

What deposited energy: 253TeV was found?

- 28 events with energies above $5-\mathrm{TeV}$ (2010-2011 data)
- a clearly seen excess over the expected atmospheric background in the PeV range (4.10 inconsistency with standard bg assumptions)

Summary

- It is a first time that we have all the oscillation parameters measured!

$$
\begin{aligned}
& \Delta m_{21}^{2}=7.44 \times 10^{-5} \mathrm{eV}^{2}(2.3 \%) \quad \begin{array}{l}
\Delta m_{31}^{2}=2.45 \times 10^{-3} \mathrm{eV}^{2} \quad \text { NO } \\
\left|\Delta m_{32}^{2}\right|=2.43 \times 10^{-3} \mathrm{eV}^{2} \quad \text { IO }
\end{array}(2.6 \%) \\
& \sin ^{2} \theta_{12}=0.3(4 \%) \quad \sin ^{2} \theta_{23}=\begin{array}{ll}
0.59 & \text { IO } \\
0.44 & \text { NO }
\end{array}(8.2 \%) \quad \sin ^{2} \theta_{13}=0.023(9.6 \%)
\end{aligned}
$$

- There are lot of things going on in neutrino experimental physics

PLEASE CONTINUE TO ENJOY NEUTRINO OSCILLATIONS

 \wedge precision measurements of
BACK UP SLIDES

Neutrino interaction vertex distributions - expected uniform in FV

Probability for uniform distributions
 \rightarrow Runs 1-3, 4 and all

Dwall Fromwall $\mathrm{R}^{2}+\mathrm{Z}$ (|| beam)
Run 1-3
34.4\%
6.04\%
32.4\%

Run 4
54.7\%
85.6\%
98.1\%

Run 1-4
20.9\%
8.93\%
64.5\%

Results
 Electron $\mathrm{p}-\theta$

Electron angle
 angle (degrees)

Assuming $\delta_{C P}=0$, normal hierarchy, $\left|\Delta \mathrm{m}^{2}{ }_{32}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{23}=1$

Best fit w/ 68\% C.L. error:

$$
\sin ^{2} 2 \theta_{13}=0.150_{-0.034}^{+0.039}
$$

90\% allowed region:

$$
0.097<\sin ^{2} 2 \theta_{13}<0.218
$$

Results

Allowed region of $\sin ^{2} 2 \theta_{13}$ for each value of $\delta_{C P}$

Best fit w/ 68\% C.L. error @ $\delta_{\text {CP }}=0$ normal hierarchy:

$$
\sin ^{2} 2 \theta_{13}=0.150_{-0.034}^{+0.039}
$$

inverted hierarchy:

$$
\sin ^{2} 2 \theta_{13}=0.182_{-0.040}^{+0.046}
$$

$\sqrt{ }(2 \Delta \operatorname{lnL})$ significance of non-zero θ_{13} yields 7.5 σ

NOTE: These are 1D contours for values of $\delta_{C P}$, not 2D contours in $\delta_{C P}-\theta_{13}$ space

High energy neutininos in IceCube

- What we are looking for?
- Point-source searches looking for clustering in the sky
- Diffuse fluxes above the atmospheric neutrino background
- Gamma-ray bursts searches
- Ultra-high energy "GZK" neutrinos from proton interactions on the CMB
- What have we found?
- 28 events with energies above $5-\mathrm{TeV}$ found (2010-2011 data)
- a clearly seen excess over the expected atmospheric background in the PeV range (4.1 σ inconsistency with standard bg assumptions)
- merges well into the bg for lower energies
- compatible with isotropic flux (events from Northern Hemisphere absorbed in Earth)
- No significant clustering observed
- Nature of these neutrinos not yet known (more data coming soon!)

