

Physics landscape at the end 1970s

- Parton model for nucleon
 - -> partons are fractionally charged quarks (gluons postulated)

$$\int_0^1 x \cdot [u(x) + \overline{u}(x) + d(x) + \overline{d}(x)] dx = 1 - \varepsilon \approx 0.5$$

- Charm quark was discovered 1974
- · QCD, a theory for strong interaction
- Neutrinos may have mass and oscillate?

Deep inelastic neutrino - nucleon scattering

- Neutrino (v_u) beam at SPS
- CDHS(W) experiment
- EW physics
 - "Weinberg angle"
 - charm production
- · QCD
 - Structure of proton
 - "Scaling violation" of $F(Q^2) \rightarrow gluon radiation$
 - Strong coupling constant
- Search for neutrino oscillations

SPS Neutrino beam (1977-1998)

SPS Neutrino beam

2 types: Wide-Band Beam and Narrow-Band Beam

Energy spectrum

NBB Energy vs radius at detector

The CDHS Experiment

1977-79:

CERN

Dortmund

Heidelberg

Saclay

~ 35 members

1980-85:

CDHSW (+Warsaw)

- 20 m long
- 1.8 m radius
- 1200 t iron (magnetized)
- 19 drift chambers
- 1500 scintillators
- 3000 PMs

Fe-scintillator calorimeter

~ 3000 photomultipliers + 19 drift chambers interleaved.

Magnetized iron

Events in the detector

$$\nu$$
 + N -> μ ⁺ + μ ⁻ + X

CC + charm decay

Some Team members

Tel Aviv, 5. Jan. 2014

CERN Competition in same v beam

• BEB*C* 1976-84

Fig. 5. Log-log plots of various moments of xF_3 . The straight lines indicate the predicted slopes.

• CHARM -> NC 1979-84

Muon experiments (EMC + BCDMS), structure functions

EMC spectrometer

EMC effect, 1982

EMC on F2:

"Measurement of the nucleon structure function F2 in muon - iron interactions at 120-GeV, 250-GeV and 280-GeV": EMC Coll., PLB, Aug, 1981

BCMS on F2:

"A measurement of the nucleon structure function from muon-carbon deep inelastic scattering at high Q^2 ": BCDMS-Coll., PLB, Sep. 1981

CDHS Structure of Proton

lines = parton model

Comparision:

 $F_2(vp)$

 $= 9/5 F_2(ed)$

= $18/5 F_2(\mu p)$

-> partons =
quarks with
Q=1/3e, 2/3e

H. Abramowicz et al., Z.Phys.C (1983)

Tel Aviv, 5. Jan. 2014

Q² evolution of structure functions

QCD fit with DGLAP evolution equations:
"Scaling violations" agree with gluon emission

Gluon distribution and strong coupling

Combined QCD analysis of $F_2(Q^2,x)$ and $\bar{q}(Q^2,x)$ projection of gluon distribution in the nucleus.

H. Abramowicz et al. Z. Phys.C (1982)

Strong coupling constant and $\Lambda_{\rm QCD}$ in LO:

$$\alpha_s(Q_0^2) = \frac{12\pi}{25 \ln(Q_0^2/\Lambda_{LO}^2)}$$

Result: $\Lambda = 250 \ (+150 \ -100) \ \text{MeV}$ $\alpha_s(\text{M}_{\text{Z}}) = 0.128 \ (10)$

Today

RPP(2012): Λ_5 = 213 (8) MeV $\alpha_s(M_Z)$ =0.120 (2)

Charm production (GIM)

CC event with additional charm quark production and semi-leptonic decay

e.g.:
$$v_{\mu} + d \rightarrow \mu^{-} + c$$
, $c \rightarrow s + \mu^{+} + v_{\mu}$

dimuon event

H. Abramowicz et al., Z. Phys. C (1982)

Electroweak mixing parameter, sin²θ_W "Weinberg angle"

H. Abramowicz et al. Phys.Rev.Lett.(1986)

High energy neutrino interactions

Using neutral-charged current ratio:

First measurements

Gargamelle: $\sin^2\theta_W = 0.3 - 0.4$

Early CDHS: $\sin^2\theta_W = 0.24 \pm 0.02$

GUT in SU(5): $\sin^2\theta_W \sim 0.2$!

Final: $\sin^2\theta_W = 0.225 (5)_{exp} (3)_{th} + 0.013 (m_c - 1.5 GeV/c^2)$

Search for v_{μ} oscillations

Tel Aviv, 5. Jan. 2014

RPP 2013 H. Murayama

Conclusion

- Neutrinos were an excellent tool to study the Standard Model and the nucleon structure
- CERN SPS neutrino beam and the CDHS detector was a great opportunity
- Understanding "scaling violations" provided first quantitative confirmation of QCD
- First good measurement of $\sin^2\theta_W$
- ep deep inelastic scattering at HERA was a natural continuation

Next came HERA

Tel Aviv, 5. Jan. 2

on the way to Hamburg

on the way to Hamburg

