Future Linear Collider Spanish Network X Meeting, Sevilla 11/02/2014

A new jet reconstruction algorithm for lepton colliders

I. García*, M. Vos IFIC (CSIC/UVEG) Valencia, Spain

With help from Gavin Salam (CERN) And Roman Poeschl and François Richard (LAL)

Introduction

Jet algorithms must be:

- * IR and collinear safe
 - observables are insensitive to soft or collinear emission
- * Simple to use in experiment and calculations
 - describe in a few lines
 - FastJet implementation
- * Subject to small hadronization corrections
 - Cambridge / Aachen at LEP
- * Future high-energy lepton colliders present an environment that differs in several important respects from that encountered at the Z-pole Do we need to rethink jet reconstruction? which algorithms are most suitable?

A brief history of sequential recombination algorithms

JADE 1980s

$$y_{ij} = \frac{E_i^2, E_j^2}{Q^2} (1 - \cos \theta_{ij})$$

Experience on e⁺e⁻ data at Z-pole

Durham or e⁺e⁻ k_t algorithm (LEP and SLC)

$$d_{ij} = 2min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$$

Adapt to hadron colliders

Generalised e⁺e⁻ k₊ algorithm

$$d_{ij} = \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})/(1 - \cos R)$$

$$d_{iB} = E_i^2$$

Feed back into e⁺e⁻ algorithms

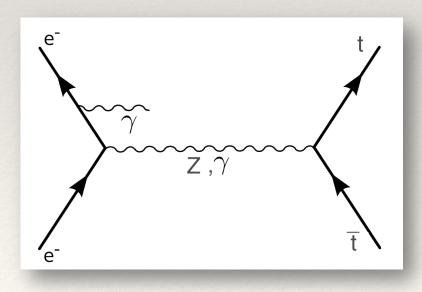
$$d_{ij} = \min(p_{Ti}^{2n}, p_{Tj}^{2n}) \Delta R_{ij}^{2n} / R^{2n}$$
$$d_{iB} = p_{Ti}^{2n}$$

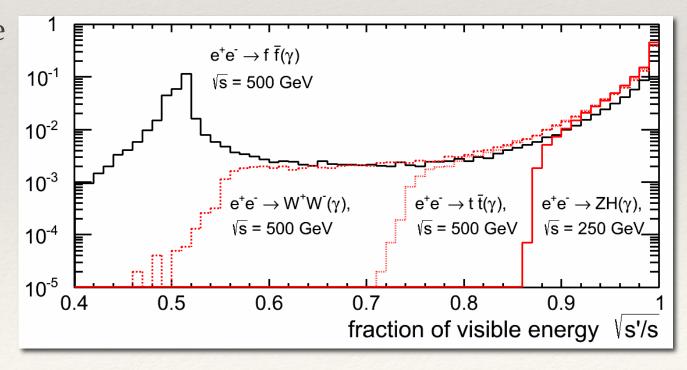
n=0: Cambridge-Aachen

n=1: Longitudinally invariant k_t

n=-1: Anti-k₊ (LHC default)

Moretti, Lonblad, Sjostrand, JHEP9808 (1998) Catani, Dokshitzer, Webber, Phys.Lett. B285 (1992) Catani, Dokshitzer, Seymour, Webber, Nucl.Phys. B406 (1994) Ellis, Soper, Phys.Rev. D48 (1993) All algorithms available in FastJet


Time to rethink e⁺e⁻ algorithms!!


Boost invariance

- * At hadron colliders the partons that participate in the hard process generally carry different fractions of the initial hadron energy.
- * The final state acquires a substantial **Lorentz boost** along the beam axis.
 - LHC di-jets: $\beta_z \sim 1$
 - LHC tt: $\beta_z \sim 0.5$
- * Replace the [energy, polar angle] basis by [transverse momentum, rapidity]

Boost invariance

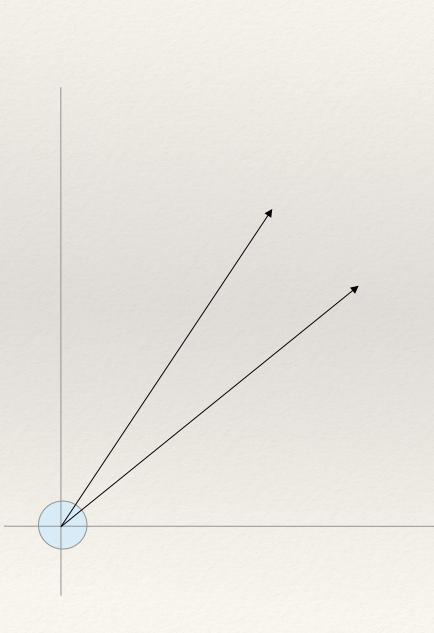
- * Photons emitted by the incoming beam particles (**Initial State Radiation**) can carry away a significant fractions of the nominal center-of-mass energy
- * For $e^+e^- \to Z/\gamma^* \to f\bar{f}$ process, with $m_f < M_Z/2 \to large$ fraction of events tends to return to the **Z-pole**
- * However for most interesting processes at a future lepton collider ISR plays a much less important role
- * At lepton colliders ISR leads to a minor boost
- * The basis $[E,\theta]$ is the most natural choice

Background levels at future LC

- * The pile-up at the LHC is a serious challenge that has led to a large body of work on mitigation and correction methods
- * LEP or SLC presented effectively negligible background
- * The $\gamma\gamma$ —> hadrons background at CLIC has strong impact on jet reconstruction performance [CLIC CDR, Marshall & Thomson, arXiv:1308.4537]
- * Less pronounced, but **non-negligible** impact on ILC physics [many studies, arXiv:1307.8102]
- * Using hadron collider algorithms can reduce these problems [CLIC CDR]

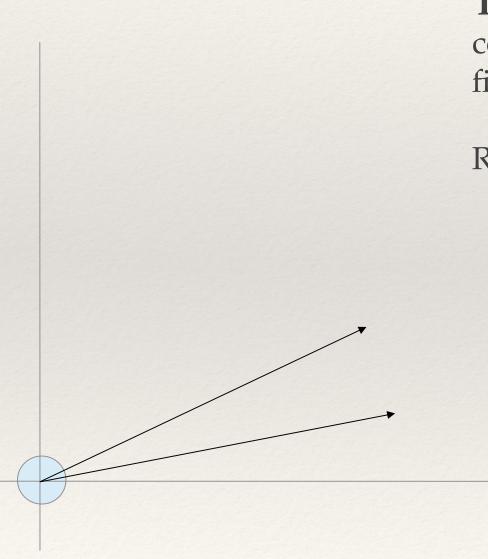
The Valencia jet algorithm

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the **Durham-like distance criterion**;


$$d_{ij} = min(E_i^{2\beta}, E_j^{2\beta})(1 - \cos \theta_{ij})/R^2$$

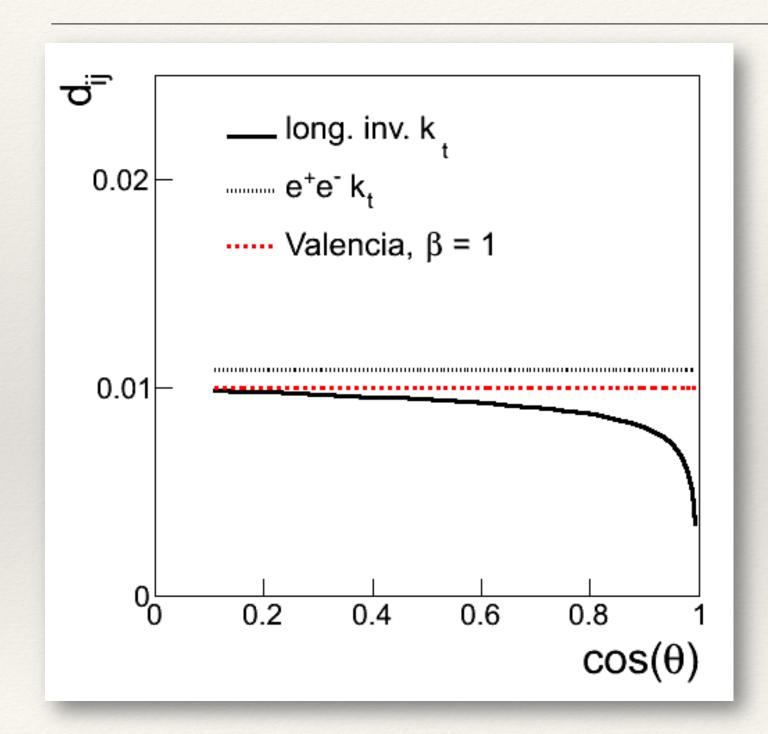
with the robustness against background of the longitudinally invariant \mathbf{k}_t algorithm

$$d_{iB} = p_T^{2\beta}$$

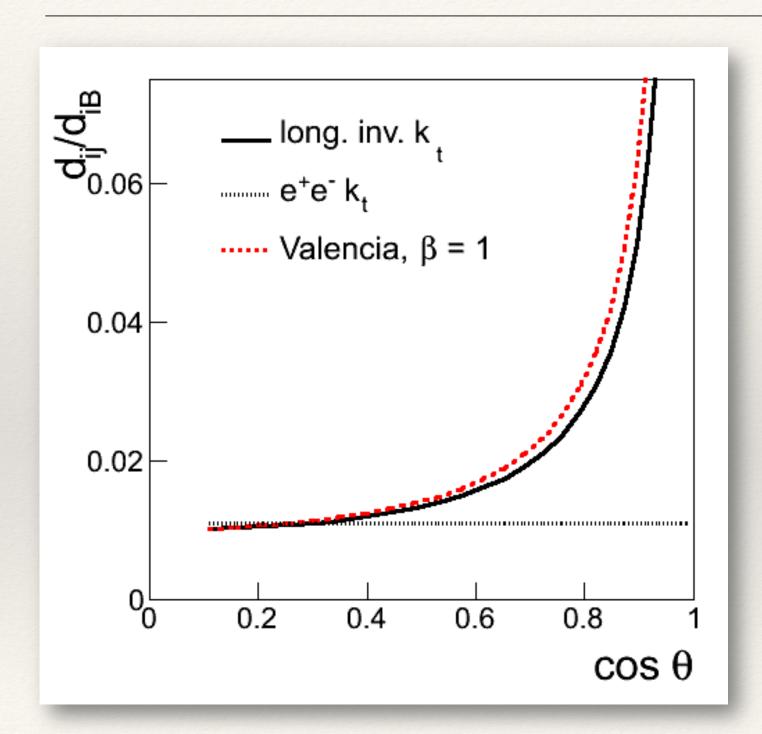

The exponent β allows to *tune* the background rejection level

The algorithm has been implemented as a plugin for the *FastJet* package and will be made available in the fjcontrib area

Two test particles with constant energy (E = 1 GeV) and fixed polar angle separation (100 mrad)


Beam axis

Two test particles with constant energy (E = 1 GeV) and fixed polar angle separation (100 mrad)


Rotating from central to forward region

Beam axis

As the two-particle system rotates into the forward region, the distance d_{ij} of longitudinally invariant k_t decreases ($\Delta\eta$ increases, p_T decreases faster)

Traditional e⁺e⁻ algorithms and Valencia have constant d_{ij}

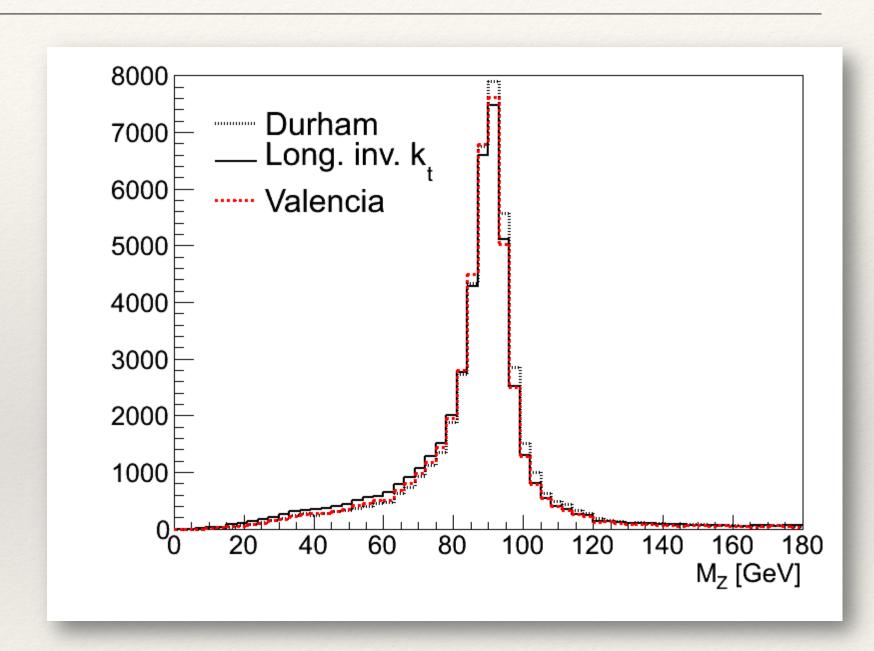
The ratio of the inter-particle distance and the beam distance:

d_{ij}/d_{iB} drives the robustness to (forward) background: the decision to assign the particle to final-state or beam jets depends on this ratio (and R)

Long. inv. k_t 's robustness is indeed due to its increasing d_{ii}/d_{iB} ratio

Valencia with $\beta=1$ is similar (by design) to long. inv. k_t

Jet reconstruction performance


CLIC di-boson (ZZ) production @ 500 GeV

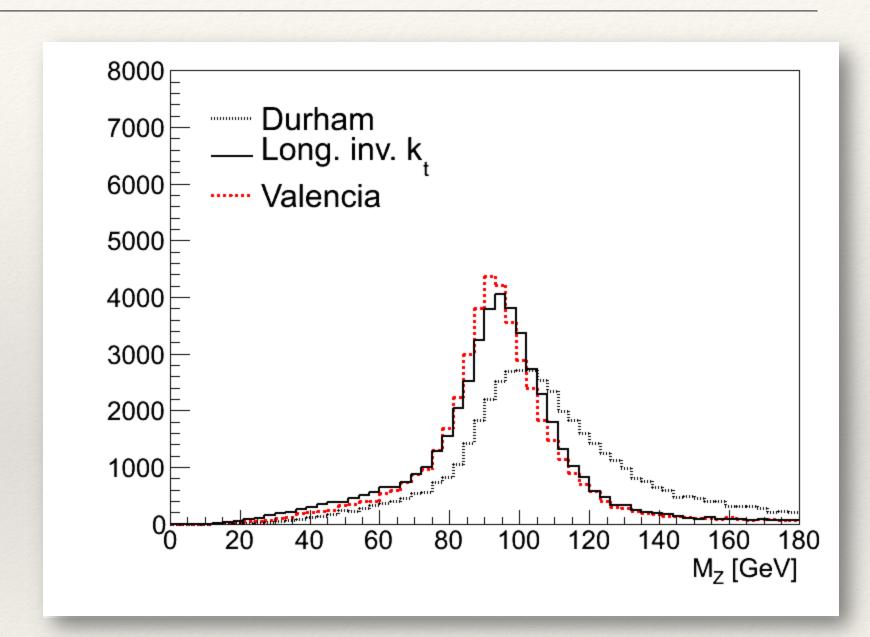
Reconstruct Particle Flow objects using PANDORA

Reconstruct jets (exclusive, n=4)

Form Z boson candidates, selecting best jet pairs

Chosen to facilitate comparison with Marshall&Thomson, CLIC CDR

No background: it doesn't really matter which algorithm you pick


Jet reconstruction performance

CLIC di-boson (ZZ) production @ 500 GeV + 300 BX of $\gamma\gamma \rightarrow$ hadrons

Reconstruct Particle Flow objects using PANDORA + quality and timing cuts

Reconstruct jets (exclusive, n=4)

Form Z boson candidates, selecting best jet pairs

Nominal background: Durham is severely affected, longitudinally invariant k_t and Valencia OK

Jet reconstruction performance

The previous results in numbers: central value and width of the Z-boson mass peak

$\sqrt{s} = 500 \text{ GeV}$, no background overlay							
[GeV]	m_Z	σ_Z	RMS ₉₀				
Durham	90.6	5.4	13.8				
long. inv. k_t	90.4	5.3	14.3				
Valencia	90.3	5.2	12.5				
$\sqrt{s} = 500 \text{ GeV}, 0.3 \ \gamma \gamma \rightarrow hadrons \text{ events/BX}$							
[GeV]	m_Z	σ_{Z}	RMS ₉₀				
Durham	101.1	13.6	28.8				
long. inv. k_t	95.1	10.9	17.9				
Valencia	93.1	10.2	17.1				

e⁺e⁻ style algorithm can compete with hadron collider algorithm

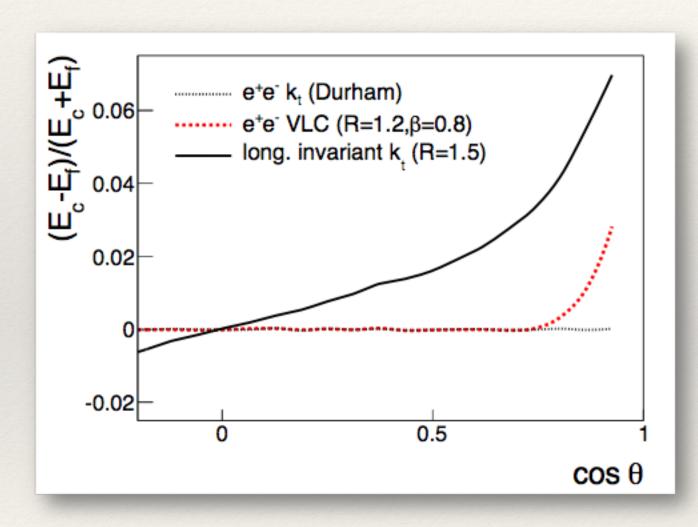
What about the ILC?

At the ILC the situation is less critical, but action is nonetheless required: Degradation of all jet-related measurements due to $\gamma\gamma \rightarrow$ hadrons background, including vertex charge, observed in many studies Follow example: IFIC/LAL study of lepton+jets tt @ 500 GeV, [arXiv:1307.8102]

RMS ₉₀ [GeV]	E_{4j}	E_W	m_W	E_t	m_t
Durham	23.2	19.6	20.3	19.5	21.4
$e^+e^- k_t$	25.6	20.8	21.6	20.5	22.8
long. inv. k_t	21.7	18.4	18.9	18.4	20.1
Valencia	21.4	18.0	18.8	18.2	20.0
	1	†	1	\	1

Durham significantly degraded.

Hadron collider algorithm and Valencia offer better reconstruction for all hadronic observables


Four-jet system

Hadronic top candidate

Hadronic W candidate

Conclusions

- * $\gamma\gamma \rightarrow$ hadrons bkg. forces us to rethink e⁺e⁻ algorithms
- * The Valencia jet algorithm retains the natural inter-particle distance criterion for e⁺e⁻ collisions and offers robust performance in the presence of the (mild) background levels expected at lepton colliders
- * It also allows to **tune the background rejection** for any machine and for the specific requirements of a given analysis
- * There is a paper to be submitted soon
- * Goes to show that, taking a break to rethink jet reconstruction, one can come up with new ideas (and better performance)

Decreasing distance in forward region

→ bias in energy sharing

Toy experiment with two jets with typical lateral development, separated by 1...

Pronounced bias for long. invariant k_t

Effect of beam jets visible for very forward jets in Valencia algorithm