ILD related R&D Activities @ IFCA

Future Linear Collider Workshop, Sevilla, Feb. 10th

- E. Currás, J.González, D. Moya, F. J. Muñoz, I. Vila, A. L. Virto., J.González Instituto de Física de Cantabria (CSIC-UC)
- S. Hidalgo, P. Fernández, A. Merlos, D. Quirion, G. Pellegrini, V. Greco, Instituto de Microelectrónica de Barcelona (CSIC)
- G. Carrión, M. Frövel.

Instituto Nacional de Técnica Aeronautica (INTA)

M. Ritzert
University of Heidelberg.

Outline

- A structural and environmental monitor for Belle-2 vertex detector based on Fiber Optic Sensor (FOS)
- -R&D on microstrips sensors (resistive & low signal gain)

FOS Monitor

L-shape basics

- Temperature & strain to displacement transducer
 with custom geometry for integration in PXD
- Readout speed from zero to 1KHz (vibrations)
- Currently three demonstrators manufactured

L-Shape Demostrators

One millimiter Diameter

/ Quartz contact ball

FOS Monitor Timeline

- ☑ 2009 Oct FOS Monitor proposal
- ☑ 2010 Jan Omega-shape proposal
- ☑ 2010 Oct. FOS radiation hardness study (1.5 GRads ,3.3 10¹) ocm
- ☑ 2011 January First omega mechanical dummies
- ☑ 2011 Sept. FOS radiation hardness study (10 Mrads)
- 2011 Dec Proof-of-concept-prototype omega
- 2012 Feb Omega calibration.
- 2012 March New transducer design L-shape
- 2012 May Test in depfet mock-up at IFIC
- 2012 October L –shape calibration
 (resolution less 1 um ,accuracy≈10 um)
- 2013 May Test in mock-up at IFIC (N₂ atmosphere)
- ✓ 2014 January commissioning at PXD-SVD common

Thermal calibrations & temperature compensation

- Calibration using a SIKA thermocouples calibrator.
- The sensitivity of three sensors was constant and near the same (difference<0.6%) Maximum deviation < 3 pm (0.3 °C)

Trivial approach to temperature compensation

Displacement Calibration

- Displacement measured with Michelson interferometer for high precision calibration (tenth of a micron)
- Readout of L-shape compared with true position (interferometer)

L-shape Output Stability

- Short term studies (temperature constant ± 0.1°)
- Continuous readout of the sensor output.
- Stabilities below or about 1um (convolution with mechanics stability)

L-shape Linearity vs. Displacement

- Calibration over a range of 1mm
- Resolution (readout resolution) 0.5 um.
- Accuracy (diff. Between inter & L-shape) ≈ 2 um

PXD – SVD Integrated test beam

Integration into the PCMAG

PXD – SVD Integrated test beam

FOS Monitor: FOS Packing

FOS Monitor: DAQ – SC integration

- Optical routing of the sensors up to the interrogating units
- Readout integrated in EPICS (dedicated driver over Ethernet). The integration went very smooth ready since the January 6th

FOS Monitor: Data: MARCO in-let & out-let lines

FOS Monitor Data: Ambient Temp

FOS Monitor: Ambient Temp+%RH

FOS Monitor: Humidity measurements

- Comparing the wavelength shift of ambient sensors (naked fibers) vs.
 commercial Humidity sensors inside the dry box.
- Excellent linearity

 and sensibility after
 temperature
 compensation

Conclusions

- A FOS-based temperature and humidity monitor read-out through EPICS commissioned and running smoothly since the beginning of the test beam.
- Most of the R&D activities required for the implementation of FOS monitor (environmental and displacement) are completed. Still some more "academic " loose ends to be completed this year.
- Next: System-wise activities for mechanical integration in Belle-II.

PART 2 - R&D ON MICROSTRIPS

- Microstrip sensors with resistive electrodes.
- Low Gain Microstrip Sensors.

R&D Motivation

– Charge division in microstrips:

- Long microstrips ladders (several tens of centimeters) proposed for the ILC tracking detectors.
- Getting the particle hit coordinate along the strip using the charge division method.
- Avoid the complexity of double sided sensors and the additional material of a second layer of sensors.
- Low gain segmented p-type pixels (strips)
 - _ Implementing a small gain in the segmented diode so we can reduce the thickness of the sensors without reducing the signal amplitude
 - Smaller contribution to the material budget.

Charge Division in uStrips

Simple single-side AC-coupled microstrip detectors

with resistive coupling electrodes.

X-coordinate: cluster-finding algorithms for strip detectors.

Y-coordinate: Resistive charge division method.

- Resistive material
- Aluminium

** Electrode resistance >> preamplifier impedance.

$$S_1 = f(y)$$

$$S_2 = f(L-y)$$

$$\underline{y} = \underline{A_2}$$

$$A_1 + A_2$$

Resistive material: high doped polysilicon

** V. Radeka, IEEE Transaction on Nuclear Science NS-21 (1974) 51

Proof-of-Concept Prototype

ALIBAVA DAQ system for microstrip detectors, based on the Beetle analogue readout ASIC

Strip:

length = 20 mm

width =20 um

Pitches:

Implant=80 um

readout= 80 um

Electrode:

R/um = 2.8 Ohms/um

R/um = 12.2

Ohms/um

3D axis stage with displacement accuracy ≈ 10 µm

> Pulsed DFB laser λ =1060nm

- Gaussian beam spot width ≈ 15 μ m
 - pulse duration 2ns

• 256 channels

peaking time = 25ns
S/N≈20 for standard

no irradiated detectors

Clean room laboratory at IFCA, Santander

Equivalent Electrical Circuit

Detector (p*-on-n) model ***
80 cells 250 μm long

 V_{bias}

Signal Propagation – Linearity (Simulation)

Longitudinal spatial resolution for 6 MIPs signal

$$\frac{A_2}{A_1 + A_2}$$

$$\sigma = \frac{A_1 A_2}{(A_1 + A_2)^2} \sqrt{\left(\frac{\sigma_{A_1}}{A_1}\right)^2 + \left(\frac{\sigma_{A_2}}{A_2}\right)^2 - 2\rho \left(\frac{\sigma_{A_1}}{A_1} \frac{\sigma_{A_2}}{A_2}\right)},$$

 $1.1\% L => 220 \mu m$

 $R/I=2.8 \Omega/\mu m$

Test Beam Characterization

Test beam at CERN SPS Pion Beam, Nov 2012

First successful integration and synchronization with AIDA MIMOSA pixel telescope

Prelimirary results:

Monitoring of beam profile.

Currently in progress:

Efficiency and resolution using tracking information.

Vista frontal del setup a escala (aproximada)

s/n test beam vs s/n radioctive

COLLICA

Resistive strips detector

Conventional strips detector

Tracking (Telescopio)

Trazas del telescopio proyectadas en el plano del DUT

Tracking (PolyA)

Distribución del número de clusters Detectados en el DUT:

Corte de 4 y 2 sigmas

No hay corte en tiempo 0-100 ns

Con un corte de 20-40 ns (selecciono el pico), no varían las resoluciones.

X Resolution (transversal)

Y resolution (logitudinal)

Se usan sólo los clusters que machean previamente el la posición transversal, Se toma un corte de 5 sigmas (0.025 mm).

Summary

- In terms of position resolution the sensors behaves as predicted. Is it enough?
- No result on efficiency due to problems with the timing sensor and wrong sensor biasing.

SEGMENTED P-TYPE SENSORS WITH CHARGE AMPLIFICATION

Charge Multiplication-pixel detectors

We are starting the fabrication of new p-type pixel detectors with enhanced multiplication effect in the n-type electrodes, very low collection times and with no cross-talk.

Three different approaches:

- 1. Thin p-type epitaxyal substrates
- 2.Low gain avalanche detectors
- 3.3D with enhanced electric field.

Two projects funded by CERN RD50 collaboration to work on these technologies.

http://rd50.web.cern.ch/rd50/

Low gain avalanche detectors (LGAD)

Implating an n++/p+/p- junction along the centre of the electrodes. Under reverse bias conditions, a high electric field region is created at this localised region, which can lead to a multiplication mechanism (impact Ionization).

Advantages = Thinning while keeping same S/N as standard detectors.

P. Fernandez et al, "Simulation of new p-type strip detectors with trench to enhance the charge multiplication effect in the n-type electrodes", Nuclear InstrumentsandMethodsinPhysicsResearchA658(2011) 98–102.

38

Simulation of the Electric Field

- To obtain the manufacture parameters (doping profiles)

Strip with P-type diffusion: 2D and 1D doping profiles

Red laser TCT characterization

i E (A

Bottom *injection*

Standard diode n on p

P-type diffusion diode

Red laser TCT characterization

Charge collection efficiency

Standard diode

P-type diffusion diode

GRACIAS!

