

Supercapacitors based power supply distribution system for ILC

Alvaro Pradas, Javier Piedrafita, Mateo Iglesias, Ivan Echeverria, <u>Fernando Arteche</u>

Complex Electrical System Group at ITA

X Meeting of the Future Linear Colliders Spanish Network 10th-12th February 2014 ETS Ingenieros Universidad de Sevilla

OUTLINE

- 1. Introduction
- 2. Power requirements
- 3. Supercapacitors based power distribution.
 - Operation conditions
- 4.Supercapacitors
 - Characterization
 - Radiation test
- 5.FTD +6 Group: Real prototype
- 6.Conclusions

1. Introduction

- Future ILC experiments need low mass detectors in order to increase the accuracy of the physics measurements.
 - Minimize or No cooling pipes
 - Low copper/aluminum components
- For that purpose, the synchronization of the FEE power consumption with the accelerator beam duty cycle is planned.
- However, special attention should be paid in the design of the power systems – It is quite complex
- There are several topologies that are under study
 - DC-DC-based power distribution
 - Super-capacitor based power distribution
- Each of them has some advantages and disadvantages
- This talk is focused on SC based power supply for FTD-ILD
 - It may be extended to any other system

2. Power requirements

 The mstrip-FTD system is a silicon strip tracker located in the innermost part of the tracker region of the ILD.

- The FTD electronics will operate synchronously (or coordinated) with ILC accelerator....
 - 1 ms bunch train every 200ms (Duty cycle of 0.5%)

2. Power requirements

- Several conservative considerations have been assumed in the electronics operation:
 - Electronics duty cycle operation (2.5% 5ms / 200ms).
 - 1 ms power up / down
 - 3 ms operation state to stabilize power and operate.
 - It minimizes transients
 - Power consumption during the standby (20% Pmax). !!!
 - It is a critical parameter (100W / 20W): 22 W/cycle
 - 2.5W/cycle FEE ON (11%)
 - 19.5W/cycle STAND BY (89 %)
 - If standby power 10W: Ptotal = 12.25 W/cycle
 - If FEE operation time 2.5ms: : Ptotal=21W/cycle

2. Power requirements

- The total Strip-FTD current / power demanded is:
 - Bunch crossing state 458 A (≈ 860 W)
 - Stand-by state 91.6A (≈ 171W)

	MIDDLE PITCH									
<u>FTD</u>	FTD3		FTD4		FTD5		FTD6		FTD7	
	INN	OUT	INN	OUT	INN	OUT	INN	OUT	INN	OUT
Nº Readout	33920	61504	41600	64224	45472	65504	51232	67424	63	424
Chips per petal (256 ch)	24		26		28		29		16	
Optical links per petal	1/2		1/2		1/2		1/2		1/2	
I1.5 (A) per Petal	1.75 / 0.35		1.9 / 0.38		2.05 / 0.41		2.12 / 0.42		1.16 / 0.23	
I2.5 (A) per Petal	1.05 / 0.21		1.13 / 0.23		1.22 / 0.24		1.27 / 0.25		0.7/0.14	
I per petal	2.79 / 0.56		3.03 / 0.61		3.26 / 0.65		3.39 / 0.68		1.86 / 0.37	
I per disk	44.6	/8.9	48.5 / 9.71		52.08	/ 10.42	54.19	/10 .84	29.76	/5.95
TOTAL Mstrip- FTD Current		0164	(CMS upgrade TK elec.)							

458 A / 91.6 A

(both sides)

3. Supercapacitor based PS

- Several important issues have to be considered during the design of the power system:
 - Transient phenomena
 - Power dissipation effects
 - Reliability
- They have an impact on the design of the power supply distribution system – Granularity (1/4 Petal)

Sevilla, February 2014

- The main elements of this topology are:
 - Supercapacitors:
 - Pulse power Transients locally
 - LV regulators:
 - Stabilize FEE voltage
 - Current source :
 - Controls super-capacitor voltage
- All these elements are crucial X Meeting of the Future LC Spanish Network

3. Supercapacitor based PS

- Each pulse generates a voltage dip
 - It is mainly influenced by the ESR of the super-capacitors
 - · Line impedance, too.
- Transient can be easily absorbed by the LV regulator
 - It should be a RAD tolerant component
- The voltage dips helps to decrease the power dissipated by LV reg.

- The high capacitance has two advantages:
 - It will protects the system in case mains failure Similar to UPS
 - It helps shutdown the system in a controlled way.
 - The dynamic response of primary power unit may be very slow
 - Remote regulation of the supercap voltage will be easy

- The duration of the shut-down capability will depend on :
 - Capacitance
 - Voltage

Power dissipated per ILC cycle (W/cycle):

Group	FTD 3+	FTD4+	FTD5+	FTD6+	FTD7+
FEE	4.6	5	5.4	5.6	3
CABLE AWG 27	0.04	0.04	0.05	0.06	0.02
LV REG	4.9	5.41	5.74	5.96	3.24
SUPERCAPS	0.06	0.072	0.083	0.089	0.027
TOTAL (1/4)	9.63	10.6	11.3	11.7	6.4
TOTAL DISK	38.5	42.1	45	46.5	25.5
External cable (20m) – AWG 16	2.92	3.515	4	4.4	1.26

	POWER (W)
HALF SIDE	197 W
TOTAL FTD	395 W

SUPERCAPS
SUPERCAPS
1%
FEE
48%

REG
51%

CableAWG27
0%

FTD6

X Meeting of the Future LC Spanish Network Sevilla, February 2014

4 Super-capacitors

- The most important element in SC-LV regulation option is the super-capacitor.
 - It is new for HEP but not for industrial applications
- There are three elements that have to be analyzed in detail for HEP applications
 - Material Budget:
 - Most of SC material is carbon It has to be analyzed in detail (DC-DC too)
 - Cycling issues
 - Radiation issues
- Cycling issues (Reliability).
 - Super-capacitor should be able to operate more that 10 million of cycles per year (DC-DC too)
- Radiation issues
 - Type of radiation: gammas & electrons
 - Total dose: 1 or 2 Mrad.

4.1 Super-capacitors: Characterization

- A power converter has been developed to test the super-capacitors for HEP applications.
- It is an automatic system that measures:
 - ESR, capacitance and capacitor temperature (synchronize)
 - It storage of the operational cycles (V, I, t,T)
 - High dynamic range 0.1 F up to 6500 F
- The system performs charge and discharge cycles at a constant current (0.5 A to 50 A) – fsw=150 / 200 kHz

4.2 Super-capacitors: Characterization

X Meeting of the Future LC Spanish Network Sevilla, February 2014

- A radiation test has been carried out in order to start the super-capacitor validation for FTD-ILD
- 5 super-capacitors have been tested ESR(T) & C(T)
 - Different rates
 - 3 x 10 F & 2 x 25 F
 - Different companies (Maxwell, Nesscap & Panassonic)

They have been tested before and after radiation at 4

different current rates

- Radiation parameters:
 - Electrons at 20 MEV
 - Beam spot 3x3 cm2
 - 4 hours of irradiation.
 - Total dose:
 - 0.6 Mrad -2.3 Mrad (3%)

Radiation test has been performed at Electron Stretcher Accelerator (ELSA, Bonn)

X Meeting of the Future LC Spanish Network Sevilla, February 2014

Blue - Before radiation / Red - After radiation

X Measured values / - Fitted values

0.6 Mrad

Panasonic -

- A real prototype of 1 Group of FTD sub-detector (FTD +6) has been developed
 - 4 load boards It simulates the FEE (hybrid) per petal
 - 2 Super-capacitors
 - 1CF structure It has been developed by FERMILAB–CMS Tracker II
 - Ip=13.5A Isb =2.7A (Per petal Ip=3.4A / Isb=0.7A)
 - Vsc = 4.2 V / Vinp=4V

- An ILC emulator has been designed
 - Testing points
- 3 LV regulators
 - -2x1.5V/1x2.5V
- Pulse load: 3 x (2 resistors)
 - 3 x MOSFET
 - Driven by Texas Instruments CB

X Meeting of the Future LC Spanish Network Sevilla, February 2014

TIME (50µs/DIV)

Regulator Transient

MAGNITUDE

X Meeting of the Future LC Spanish Network Sevilla, February 2014 TIME (50µs/DIV)

Major Fault – UPS capability

- A very simple temperature test has been performed
- Temperature sensors were installed on each board:
 - One Termistor (PTC) per LV regulator
 - Temperature is processed by the control board
- A fan has been installed on one side of the CF structure
 - It has been switched on /off
- Systems were running more than 3 hours
- Baseline Temperature : 21°C

- LVReg (1.5V) dissipates more power than LV (2.5V)
- From the point of view of electronics, "this prototype" does not need to be cooled (resistances dissipate power too)
 - Not Cooled: Tmax(P1)≈51°C (Δ T ≈ 30°C) / Tmin(P3)≈ 46°C (Δ T ≈ 25°C)
 - Cooled: Tmax(P2)≈34°C (ΔT ≈ 13°C) / Tmin(P3)≈ 25°C (ΔT ≈ 4°C)
- Pulsing effect is very small from the point of view temperature

6. Conclusions

- A general overview of the supercapacitor based power supply distribution system for FTD has been presented
- Main characteristics and key elements have been shown
 - Operation condition (regulation, pulsing, supercapacitors..)
- Supercapacitors fit quite well power pulsing requirements
 - Radiation hardness shows no stoppers
 - It still requires a detail analysis
- A real prototype of 1 group has been developed and tested
 - Very good agreement with simulations
- Power dissipation aspects :
 - From electronics point of view, this system does not need to be cooled
 - The pulsing effect seems not to have a big impact
- The results are very promising but a long study of the system is required in order to define final specification