



# CLIC / CTF 3



#### Frank Tecker - BE/OP

- Introduction CLIC / CTF 3
- Visit of CTF3





# Path to higher energy





#### History:

- Energy constantly increasing with time
- Hadron Collider at the energy frontier
- Lepton Collider for precision physics
- LHC coming online soon
- Consensus to build Lin. Collider with  $E_{cm} > 500$  GeV to complement LHC physics (European strategy for particle physics by CERN Council)



## Lepton vs. Hadron Collisions



LHC:  $H \rightarrow ZZ \rightarrow 4\mu$ 



RUN NR 284802 2/5/91
EVENT NR 159 2/5/94

ALICE: Ion event

LEP event:  $Z^0 \rightarrow 3$  jets

#### • Hadron Collider (p, ions):



- Composite nature of protons
- Can only use p<sub>t</sub> conservation
- Huge QCD background

#### Lepton Collider:



- Elementary particles
- Well defined initial state
- Beam polarization
- produces particles democratically
- Momentum conservation eases decay product analysis



#### The LEP collider



- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+ e- circular collider (27 km) with  $E_{cm}$ =200 GeV
- Problem for any ring:Synchrotron radiation
- Emitted power: scales with  $E^4$ !! and  $1/m_0^3$  (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!





# The next lepton collider



- Solution: LINEAR COLLIDER
- avoid synchrotron radiation
- no bending magnets, huge amount of cavities and RF





# Linear Collider vs. Ring







the same beams for collision

#### Storage rings:

- accelerate + collide every turn
- 're-use' RF + 're-use' particles
- $\bullet \Rightarrow$  efficient

#### Linear Collider:

- one-pass acceleration + collision
  - $\Rightarrow$  need
- high gradient (acceleration)
- small beam size

to reach high event rate (Luminosity)



# Linear Collider projects



- ILC (International Linear Collider)
  - Technology decision Aug 2004
  - Superconducting technology
  - 1.3 GHz RF frequency
  - ◆ ~31 MV/m accelerating gradient
  - 500 GeV centre-of-mass energy
  - upgrade to 1 TeV possible

- CLIC(Compact Linear Collider)
  - normalconducting technology
  - multi-TeV energy range (nom. 3 TeV)

~35 km total length



Frank Tecker CLIC / CTF3 Introduction 2009



# **CLIC-CTF3** Collaboration





Ankara University (Turkey)
Berlin Tech. Univ. (Germany)
BINP (Russia)
CERN
CIEMAT (Spain)
DAPNIA/Saclay (France)

RRCAT-Indore (India)
Finnish Industry (Finland)
Gazi Universities (Turkey)
Helsinki Institute of Physics (Finland)
IAP (Russia)
Instituto de Fisica Corpuscular (Spain)
INFN / LNF (Italy)

JASRI (Japan)
JINR (Russia)
KEK (Japan)
LAL/Orsay (France)
LAPP/ESIA (France)
LLBL/LBL (USA)
NCP (Pakistan)

PSI (Switzerland), North-West. Univ. Illinois (USA) Polytech. University of Catalonia (Spain) John Adams Institute (England) SLAC (USA) Svedberg Laboratory (Sweden) Uppsala University (Sweden)



#### **CLIC** scheme



- Very high gradients possible with NC accelerating structures at high RF frequencies (12 → 30 GHz)
- Extract RF power from an intense electron "drive beam"
- Generate efficiently long pulse and compress it (in power + frequency)

400 Klystrons Low frequency High efficiency Power stored in electron beam

Power extracted from beam in resonant structures

am 70000 Accelerating Structures High Frequency – High field





Long RF Pulses  $P_0$  ,  $v_0$  ,  $\tau_0$ 

Electron beam manipulation Power compression Frequency multiplication Short RF Pulses  $P_A = P_0 \times N_1$   $\tau_A = \tau_0 / N_2$   $v_A = v_0 \times N_3$ 



### CLIC two beam scheme



- Two beam acceleration scheme:
  - High charge Drive Beam (low energy)
  - Low charge Main Beam (high collision energy)
- High power for high gradient of >100 MV/m

CLIC TUNNEL CROSS-SECTION





# CLIC – overall layout – 3 TeV







# Drive beam generation basics





Frequency multiplication

Beam combination/separation by transverse RF deflectors





### CLIC Drive Beam generation











#### Drive beam time structure - final





# Delay Loop Principle



- double repetition frequency and current
- parts of bunch train delayed in loop
- RF deflector combines the bunches





### RF injection in combiner ring



• combination factors up to 5 reachable in a ring













## CTF 3



- demonstrate remaining CLIC feasibility issues, in particular:
  - Drive Beam generation (fully loaded acceleration, bunch frequency multiplication)
  - CLIC accelerating structures
  - CLIC power production structures (PETS)





# CTF3 Delay Loop







### Delay Loop – full recombination



3.3 A after chicane =>< 6 A after combination (satellites)</li>







#### Demonstration of RF recombination



#### CTF3 - PRELIMINARY PHASE

Successful low-charge demonstration of electron pulse combination and bunch frequency multiplication by up to factor 5





Streak camera image of beam time structure evolution





# CTF3 combiner ring







# Combiner ring status



• factor 4 combination achieved with 15 A, 280 ns (without Delay Loop)





## Factor 8 combination (DL+CR)



- ◆ ~26 A combination achieved, nominal 140 ns pulse length
- detailed studies still to be done





Frank Tecker CLIC / CTF3 Introduction 2009



# Lemmings Drive Beam





Alexandra Andersson



# Power extraction structure PETS



- must extract efficiently several 100 MW power from high current drive beam
- periodically corrugated structure with low impedance (big  $a/\lambda$ )
- ON/OFF mechanism









2009









## **CLIC Test Facility CTF II**





#### Dismantled in 2002, after having achieved its goals:

- · Demonstrate feasibility of a two-beam acceleration scheme
- Provide high power 30 GHz RF source for high gradient testing (280 MW, 16 ns pulses)
- Study generation of short, intense e-bunches using photocathode RF guns
- Demonstrate operability of  $\mu$ -precision active-alignment system in accelerator environment
- · Provide a test bed to develop and test accelerator diagnostic equipment



## **CLIC** Test Facility CTF II







## Achieved accelerating fields in CTF2



High gradient tests of 30 GHz structures with molybdenum irises reached 190 MV/m peak accelerating gradient without any damage well above the nominal CLIC accelerating field of 150 MV/m but with RF pulse length of 16 ns only (nominal 160 ns)



30 cell clamped tungsten-iris structure







### Present best structure performance



 Exceeded 100 MV/m at nominal CLIC pulse length and breakdown rate





| Frequency:                  | 11.424 GHz          |
|-----------------------------|---------------------|
| Cells:                      | 18+2 matching cells |
| Filling Time:               | 36 ns               |
| Length: active acceleration | 18 cm               |
| Iris Dia. a/λ               | 0.155~0.10          |
| Group Velocity: vg/c        | 2.6-1.0 %           |
| Phase Advace Per Cell       | $2\pi/3$            |
| Power for <ea>=100MV/m</ea> | 55.5 MW             |
| Unloaded Ea(out)/Ea(in)     | 1.55                |
| Es/Ea                       | 2                   |

Frank Tecker CLIC / CTF3 Introduction 2009



### CLEX test area



- Deceleration and two-beam tests
- High power tests of PETS and accelerating structures







### **Conclusions**



- CTF3 is to show the CLIC feasibility until 2010
  - stable Drive Beam generation
  - high gradient RF performance
- many important results obtained so far
- key issues still to demonstrate
- challenging but very interesting

• next: the visit