

CLIC / CTF 3

Frank Tecker - BE/OP

- Introduction CLIC / CTF 3
- Visit of CTF3

Path to higher energy

History:

- Energy constantly increasing with time
- Hadron Collider at the energy frontier
- Lepton Collider for precision physics
- LHC has come online
- Consensus to build Lin. Collider with E_{cm} > 500 GeV to complement LHC physics (*European strategy for particle physics* by CERN Council)

LHC vs. Lepton Collisions

LHC: $H \rightarrow ZZ \rightarrow 4\mu$

ALICE: Ion event

Much more precise

measurements of

particle properties

=> precision

analysis with leptons

EVENT NR 159 21 10.44

LEP event: $Z^0 \rightarrow 3$ jets

• Hadron Collider (p, ions):

- Composite nature of protons
- Can only use p_t conservation
- Huge QCD background

• Lepton Collider:

- Elementary particles
- Well defined initial state
- Beam polarization
- produces particles democratically
- Momentum conservation eases decay product analysis

The LEP collider

- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+ e- circular collider (27 km) with E_{cm}=200 GeV
- Problem for any ring:Synchrotron radiation
- Emitted power: scales with E^4 !! and $1/m_0^3$ (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!

The next lepton collider

- Solution: LINEAR COLLIDER
- avoid synchrotron radiation
- no bending magnets, huge amount of cavities and RF

Linear Collider vs. Ring

the same beams for collision

Storage rings:

- accelerate + collide every turn
- 're-use' RF + 're-use' particles
- => efficient

• Linear Collider:

- one-pass acceleration + collision
 - => need
- high gradient (acceleration)
- small beam size

to reach high event rate (Luminosity)

Linear Collider projects

- ILC (International Linear Collider)
 - Technology decision Aug 2004
 - Superconducting technology
 - 1.3 GHz RF frequency
 - ~31 MV/m accelerating gradient
 - 500 GeV centre-of-mass energy
 - upgrade to 1 TeV possible

- CLIC(Compact Linear Collider)
 - normalconducting technology
 - multi-TeV energy range (nom. 3 TeV)

~35 km total length

Frank Tecker CLIC / CTF3 Introduction 2011

World-wide CLIC&CTF3 Collaboration

Aarnus University (Denmark)
Ankara University (Turkey)

Argonne National Laboratory (US Athens University (Greece)

BINP (Russia)

CERN

CIEMAT (Spain)

Cockcroft Institute (UK)

ETHZurich (Switzerland)
FNAL (USA)

Gazi Universities (Turkey)

Helsinki Institute of Physics (Finland)
IAP (Russia)

IAP NASU (Ukraine)

IHEP (China)
INFN / LNF (Italy)

Instituto de Fisica Corpuscular (Spain)
IRFU / Saclay (France)

Laffarson Lah (USA)

John Adams Institute/Oxford (UK)

John Adams Institute/RHUL (UK) JINR (Russia)

Karlsruhe University (Germany) KEK (Japan)

LAL / Orsay (France)
LAPP / ESIA (France)

NIKHEF/Amsterdam (Netherland)
NCP (Pakistan)

North-West. Univ. Illinois (USA)
Patras University (Greece)

Polytech. University of Catalonia (Spain)
PSI (Switzerland)

RAL (UK)

RRCAT / Indore (India)

SLAC (USA)

Thrace University (Greece)

Tsinghua University (China) University of Oslo (Norway)

Uppsala University (Sweden)

UCSC SCIPP (USA)

CLIC scheme

- Very high gradients possible with NC accelerating structures at high RF frequencies (12 → 30 GHz) for short RF pulses
- Extract RF power from an intense electron "drive beam"
- Generate efficiently long pulse and compress it (in power + frequency)

800 Klystrons Low frequency High efficiency Power stored in electron beam

Power extracted from beam in resonant structures

am 70000Accelerating StructuresHigh Frequency - High field

Long RF Pulses P_0 , v_0 , τ_0

Electron beam manipulation Power compression Frequency multiplication Short RF Pulses $P_A = P_0 \times N_1$ $\tau_A = \tau_0 / N_2$ $v_A = v_0 \times N_3$

CLIC two beam scheme

- Two beam acceleration scheme:
 - High charge Drive Beam (low energy)
 - Low charge Main Beam (high collision energy)
- ◆ High power for high gradient of >100 MV/m

CLIC TUNNEL CROSS-SECTION

CLIC – overall layout 3 TeV

Drive beam generation basics

CLIC Drive Beam generation

Delay Loop Principle

- double repetition frequency and current
- parts of bunch train delayed in loop
- RF deflector combines the bunches

RF injection in combiner ring

• combination factors up to 5 reachable in a ring

CTF 3

- demonstrate remaining CLIC feasibility issues, in particular:
 - Drive Beam generation (fully loaded acceleration, bunch frequency multiplication)
 - CLIC accelerating structures
 - CLIC power production structures (PETS)

CTF3 Delay Loop

Delay Loop – full recombination

• 3.3 A after chicane =>

< 6 A after combination (satellites)

Demonstration of RF recombination

CTF3 - PRELIMINARY PHASE

Successful low-charge demonstration of electron pulse combination and bunch frequency multiplication by up to factor 5

Streak camera image of beam time structure evolution

time

CTF3 combiner ring

Combiner ring status

• factor 4 combination achieved with 15 A, 280 ns (without Delay Loop)

Factor 8 combination (DL+CR)

- ◆ ~26 A combination achieved, nominal 140 ns pulse length
- detailed studies still to be done

Lemmings Drive Beam

Alexandra Andersson

Power extraction structure PETS

- must extract efficiently several
 100 MW power from high current drive beam
- periodically corrugated structure with low impedance (big a/λ)
- ON/OFF mechanism

CLIC Test Facility CTF II

Present best structure performance

 Exceeded 100 MV/m at nominal CLIC pulse length and breakdown rate

A S	Frequency:	11.424 GHz

11.424 GHz
18+2 matching cells
36 ns
18 cm
0.155~0.10
2.6-1.0 %
$2\pi/3$
55.5 MW
1.55
2

Two-Beam Acceleration demonstration

TD24 accelerating structure

Maximum probe beam acceleration of 23 MeV measured (with structure heated to 60°C)

=> Corresponding to a **gradient** of **106 MV/m**

Lots of work still to be done, but on-time to complete feasibility benchmarks by mid-2011

Conclusions

- CTF3 is to show the CLIC feasibility until 2011
 - stable Drive Beam generation
 - high gradient RF performance
- many important results obtained so far
- some key issues still to demonstrate
- challenging but very interesting

• next: the visit