

CLIC / CTF 3

Frank Tecker - AB/OP

- Introduction CLIC / CTF 3
- Visit of CTF3

Path to higher energy

History:

- Energy constantly increasing with time
- Hadron Collider at the energy frontier
- Lepton Collider for precision physics
- LHC coming online soon
- Consensus to build Lin. Collider with E_{cm} > 500 GeV to complement LHC physics (European strategy for particle physics by CERN Council)

Lepton vs. Hadron Collisions

LHC: $H \rightarrow ZZ \rightarrow 4\mu$

SYSTEM 1009

ALICE: Ion event

LEP event: $Z^0 \rightarrow 3$ jets

Hadron Collider (p, ions):

- Composite nature of protons
- Can only use p_t conservation
- Huge QCD background

• Lepton Collider:

- Elementary particles
- Well defined initial state
- Beam polarization
- produces particles democratically
- Momentum conservation eases decay product analysis

The LEP collider

- LEP (Large Electron Positron collider) was installed in LHC tunnel
- e+ e- circular collider (27 km) with E_{cm} =200 GeV
- Problem for any ring:Synchrotron radiation
- Emitted power: scales with E^4 !! and $1/m_0^3$ (much less for heavy particles)
- This energy loss must be replaced by the RF system !!
- particles lost 3% of their energy each turn!

The next lepton collider

- Solution: LINEAR COLLIDER
- avoid synchrotron radiation
- no bending magnets, huge amount of cavities and RF

Linear Collider vs. Ring

the same beams for collision

Storage rings:

- accelerate + collide every turn
- 're-use' RF +'re-use' particles
- $\bullet \Rightarrow$ efficient

Linear Collider:

- one-pass acceleration + collision
 - \Rightarrow need
- high gradient (acceleration)
- small beam size

to reach high event rate (Luminosity)

Linear Collider projects

- ILC (International Linear Collider)
 - Technology decision Aug 2004
 - Superconducting technology
 - 1.3 GHz RF frequency
 - ◆ ~31 MV/m accelerating gradient
 - 500 GeV centre-of-mass energy
 - upgrade to 1 TeV possible

- CLIC(Compact Linear Collider)
 - normalconducting technology
 - multi-TeV energy range (nom. 3 TeV)

~35 km total length

Frank Tecker CLIC / CTF3 Introduction 19.02.2008

CLIC-CTF3 Collaboration

Ankara University (Turkey)
Berlin Tech. Univ. (Germany)
BINP (Russia)
CERN
CIEMAT (Spain)
DAPNIA/Saclay (France)

RRCAT-Indore (India)
Finnish Industry (Finland)
Gazi Universities (Turkey)
Helsinki Institute of Physics (Finland)
IAP (Russia)
Instituto de Fisica Corpuscular (Spain)
INFN / LNF (Italy)

WORLD WIDE CLIC & CTF3 COLLABORATION

JASRI (Japan)
JINR (Russia)
KEK (Japan)
LAL/Orsay (France)
LAPP/ESIA (France)
LLBL/LBL (USA)
NCP (Pakistan)

PSI (Switzerland), North-West. Univ. Illinois (USA) Polytech. University of Catalonia (Spain) John Adams Institute (England) SLAC (USA) Svedberg Laboratory (Sweden) Uppsala University (Sweden)

CLIC scheme

- Very high gradients possible with NC accelerating structures at high RF frequencies (12 → 30 GHz)
- Extract RF power from an intense electron "drive beam"
- Generate efficiently long pulse and compress it (in power + frequency)

400 Klystrons Low frequency High efficiency Power stored in electron beam

Power extracted from beam in resonant structures

am 70000

Accelerating Structures

High Frequency – High field

Long RF Pulses P_0 , v_0 , τ_0

Electron beam manipulation
Power compression
Frequency multiplication

Short RF Pulses $P_A = P_0 \times N_1$ $\tau_A = \tau_0 / N_2$ $v_A = v_0 \times N_3$

CLIC two beam scheme

- Two beam acceleration scheme:
 - High charge Drive Beam (low energy)
 - Low charge Main Beam (high collision energy)
- ◆ High power for high gradient of >100 MV/m

CLIC TUNNEL CROSS-SECTION

CLIC – overall layout

Drive beam generation basics

Frequency multiplication

Beam combination/separation by transverse RF deflectors

CLIC Drive Beam generation

Delay Loop Principle

- double repetition frequency and current
- parts of bunch train delayed in loop
- RF deflector combines the bunches

RF injection in combiner ring

• combination factors up to 5 reachable in a ring

CTF 3

- demonstrate remaining CLIC feasibility issues, in particular:
 - Drive Beam generation (fully loaded acceleration, bunch frequency multiplication)
 - CLIC accelerating structures
 - CLIC power production structures (PETS)

CTF3 Delay Loop

Delay Loop – full recombination

• 3.3 A after chicane => < 6 A after combination (satellites)

Demonstration of RF recombination

CTF3 - PRELIMINARY PHASE

Successful low-charge demonstration of electron pulse combination and bunch frequency multiplication by up to factor 5

Streak camera image of beam time structure evolution

CTF3 combiner ring

CTF3 Combiner Ring Status

First recombination at higher current achieved

Frank Tecker CLIC / CTF3 Introduction 19.02.2008

CLIC Test Facility CTF II

Dismantled in 2002, after having achieved its goals:

- · Demonstrate feasibility of a two-beam acceleration scheme
- Provide high power 30 GHz RF source for high gradient testing (280 MW, 16 ns pulses)
- Study generation of short, intense e-bunches using photocathode RF guns
- Demonstrate operability of μ -precision active-alignment system in accelerator environment
- · Provide a test bed to develop and test accelerator diagnostic equipment

CLIC Test Facility CTF II

Structure breakdown and damages

- Cu structures limited to surface fields of 300-400 MV/m
- Severe surface damage noticed

Microscopic image of damaged iris

Damaged iris - longitudinal cut

- Two-pronged approach:
 - modify RF design geometrylower Es/Ea ~ 2
 - investigate new iris material

Copper iris replaced by Tungsten iris

Achieved accelerating fields in CTF2

High gradient tests of 30 GHz structures with molybdenum irises reached 190 MV/m peak accelerating gradient without any damage well above the nominal CLIC accelerating field of 150 MV/m but with RF pulse length of 16 ns only (nominal 160 ns)

30 cell clamped tungsten-iris structure

30 GHz test line in CTF3

30 GHz structure testing

- 150 MV/m peak for ~ 70 ns (but breakdown rate too high)
- breakdown behaviour not yet understood:
 - physics background
 - dependence on
 - field/power/energy
 - time
 - material

• intensive test program ongoing

11.4 GHz High-Power test results

Recent SLAC High-Power test results – 11.4 GHz

Power extraction structure PETS

- must extract efficiently several
 100 MW power from high current drive beam
- periodically corrugated structure with low impedance (big a/λ)
- ON/OFF mechanism

PETS ON/OFF mechanism

Reconstructed from GDFIDL data PETS output pulse envelopes

CLEX test area

- Deceleration and two-beam tests
- Test of PETS and accelerating structures at high power

Conclusions

- CTF3 is to show the CLIC feasibility until 2010
 - stable Drive Beam generation
 - high gradient RF performance
- many important results obtained so far
- key issues still to demonstrate
- challenging but very interesting

next: Visit to CTF3