
2014
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 2

Advanced C++ model for both calorimeters of the CMS detector

Abstract:
This computing session is the direct sequel of Computing Session 1. Where as only the electro-
magnetic barrel calorimeter was modeling, the students must take into account the hadronic
barrel calorimeter by extending the code previously written. The exercise will allow to pratice
some advanced concepts of C++. In a second part, energy acquired by each (electromag-
netic and hadronic) calorimeter cell will be used to reconstruct photon object by designing and
writing a clustering algorithm.

Pedagogical goals:

C++ language • Using inheritance in the code design in order to facilitate the
creation and the maintain of classes.

• Using polymorphism to supply a common interface to several
classes.

• Designing an algorithm and implementing implement it in an
e�cient and optimized way.

Collaboration work • Respecting a given set of programming rules and conventions.

• Generating automatically the reference documentation re-
lated to the code with Doxygen.

Compiling/linking • Compiling and linking a project made up of several source
�les in an automated (Make�le) way.

Requirements:

• The class CaloCell from Computing Session 1.

• Concept of inheritance and polymorphism in C++.

1 / 15

Contents

1 Foreword 3

2 Physics context 4
2.1 The hadronic calorimeter of the CMS detector 4
2.2 Layout and mechanics of the barrel calorimeter 4
2.3 Data acquisition by a calorimeter cell . 4

3 Smart description of hadronic/electromagnetic calorimeter cell 6
3.1 Speci�cations . 6
3.2 Class designs based on enheritance . 7
3.3 Work to do . 8

4 Array of electromagnetic and hadronic cells 10
4.1 Preliminary . 10
4.2 First contact with polymorphism . 10
4.3 Use virtual functions . 11
4.4 Array of calorimeter cells . 11
4.5 Abstract base class . 11

5 Compiling with GNU make 12
5.1 Some words about the program GNU make . 12
5.2 Minimal make�le . 12
5.3 Enriched make�le . 14

2 / 15

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. It is advised to read this document section-by-section. Indeed,
except the Physics context, each section of the document is a milestone allowing to acquire
computing skills and to validate them. The sections related to C++ programming are ranked
in terms of complexity. In order to facilitate the reading of this document and to measure his
progress, the student must �ll up the dedicated roadmap which includes a check-list and
empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for extend-
ing the main explanations. It is devoted to curious stu-
dents.

A piece of advice is given to help the student in his
task.

Concerning the evaluation of these computing sessions, all source �les and other relevant digital
documents must be provided to the examiner. Therefore they must be stored in a public folder
on the lxplus session. The suggested naming convention is the following:

$HOME/public/TP1

$HOME/public/TP2

$HOME/public/TP3

$HOME/public/TP4

The student is invited to develop his code directly in such folder.

3 / 15

2 Physics context

The physics context is the same than the one presented in Computing session 1. Therefore
it is based on the calorimetry system of the CMS detector. Where as the previous session
was restricted to the electromagnetic calorimeter, the context will be extended to the hadronic
calorimeter. Details on this apparatus is given in this section.

2.1 The hadronic calorimeter of the CMS detector

The aim of the hadronic calorimeter is to measure the energy of hadrons produced during the
collisions. It is a sampling calorimeter, i.e. it is made up of alternating layers of absorber
(mainly brass) and scintillator (plastic) materials. At high energies, hadrons induce hadronic
shower when they interact with the absorber part of the calorimeter. The shower could be also
initiated inside the electromagnetic calorimeter. The total absorber thickness at 90° is 5.82
interaction lengths λi with λi equal to 16.42 cm. The CMS hadronic calorimeter is hermetic
and compact. It covers the full range in azimuthal angle and the pseudorapidity range |η| < 3.
The hadronic calorimeter is compound of multilayer cells and they are layout into two di�erent
geometries:

• the cylinder part, called barrel, has a radius of 1.77 cm and it contains 2160 cells. It
covers the range |η| < 1.3.

• the two planes at each end of the cylinder (z=-4 m and z=+4 m), called end-cap, and
contain together 1440 cells. They cover the range 1.3 < |η| < 3.0.

Barrel

E
n
d
-C
ap

E
n
d
-C
ap

z

1.77m

z=-4m z=+4m

Figure 1: Barrel and End-cap part of the calorimeter in the transverse plane of the detector

Only the barrel part of the calorimeter is considered in the following.

2.2 Layout and mechanics of the barrel calorimeter

The cells are gathered in 36 wedges. One wedge contains 4 × 15 cells. Their layout in the η−φ
plane is shown by the �gure below.

2.3 Data acquisition by a calorimeter cell

For the sake of completness, the acquisition chain of a calorimeter cell is brie�y discussed. The
scintillator material emits scintillation light which is collected by WaveLength Shifting (WLS)
�bres and then reaches hybride photodiodes(HPD). Reaching a Very-Front-End electronics, the
signal is shaped and then digitized by an ADC (Analogic Digital Converter). After an adap-
tation of the signal, the signal is sent to a Front-End electronics board which computes some
information useful for the �rst level of trigger. If the trigger is �red, digital data are sent to

4 / 15

→ phi

eta

+1.30

-1.30

0

360°

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18

Figure 2: Segmentation of the calorimeter barrel in terms of wedges

phi

eta

+1.30

0
20°

...

15 cells

Figure 3: Segmentation of the wedges in cells

the DAQ (Data AcQuisition).

The energy resolution can be parametrized as in the equation:(σ
E

)2

=

(
S√
E

)2

+ C2

where S is the stochastic term and C the constant term. Typical values are S=65% and C=6%
for E in GeV.

5 / 15

3 Smart description of hadronic/electromagnetic calorime-

ter cell

The aim of this section is to implement a class describing a cell from the electromagnetic
calorimeter and a cell from hadronic calorimeter.

3.1 Speci�cations

The class related to the electromagnetic calorimeter has been (normally) implemented in Com-
puting Session 1 and it was called caloCell. In this part, in order to distinguish electromagnetic
and hadronic cell, this class will be called elecCell in the following. The diagram UML related
to this class was given in Computing Session 1 and it is reminded here:

elecCell
-mask_: bool = false
-rawEnergy_: double = 0.
-gain_: double = 0.
-offset_: double = 0.
-etaPosition_: unsigned int = 0
-phiPosition_: unsigned int = 0

+elecCell()
+elecCell(in etaPosition:unsigned int,in phiPosition:unsigned int,
 in mask:bool,in offset:double,in gain:double,
 in energy:double)
+~elecCell()
+getMask(): bool
+getRawEnergy(): double
+getGain(): double
+getOffset(): double
+getEtaPosition(): unsigned int
+getPhiPosition(): unsigned int
+getEnergy(): double
+getResolution(): double
+setMask(in mask:bool): void
+setRawEnergy(in energy:double): void
+setGain(in gain:double): void
+setOffset(in offset:double): void
+setEtaPosition(in eta:unsigned int): void
+setPhiPosition(in phi:unsigned int): void
+print(): void
+clear(): void

Figure 4: UML diagram related to the naive implementation of the class elecCell

The class describing a hadronic calorimeter cell will be called hadCell. The content of this
class is very similar to hadCell but there are some di�erences:

• We assume the energy of the hadronic calorimeter is already corrected. So the class must
not contain o�set, gain and mask. The data member describing the (already corrected)
energy is still called rawEnergy_ by analogy with the class elecClass. Both functions
getRawEnergy and getEnergy return simply the value of the data member rawEnergy_.

• The formula used by the getResolution is di�erent than the one used for a electromag-
netic calorimeter cell.

6 / 15

• The class has a data member speci�c to hadron collider: thickness_ describing the
thickness of a cell in terms of interaction length λi. Corresponding accessor (getter) and
mutator (setter) must be implemented (functions getThickness and setThickness).

Taking into account these speci�cations, the corresponding UML diagram should be:

hadCell
-rawEnergy_: double = 0.
-etaPosition_: unsigned int = 0
-phiPosition_: unsigned int = 0
-thickness_: double = 0.

+hadCell()
+hadCell(in etaPosition:unsigned int,in phiPosition:unsigned int,
 in energy:double)
+~hadCell()
+getRawEnergy(): double
+getEtaPosition(): unsigned int
+getPhiPosition(): unsigned int
+getEnergy(): double
+getThickness(): double
+setRawEnergy(in energy:double): void
+setEtaPosition(in eta:unsigned int): void
+setPhiPosition(in phi:unsigned int): void
+setThickness(in thickness:double): void
+print(): void
+clear(): void

Figure 5: UML diagram related to the naive implementation of the class hadCell

Of course, it is possible to implement these two classes according to their UML diagrams.
But we invite the students to implement them in a more e�cient and clever way based on
enheritance.

3.2 Class designs based on enheritance

Why the implementation described above is naive?

• The two classes have many common data member and methods. We would like to avoid
as much as possible from code duplications, essentially for maintenance reasons.

• For using the polymorphism concept (explanations are given in the next section).

A more clever implementation consists in de�ned a third class called caloCell. This third
class will contain all common content. The class elecCell and hadCell will inherant from the
class CaloCell. Only their speci�ties will be implemented explicity. The relationship between
theses 3 classes is represented in UML language by the following scheme.

7 / 15

caloCell

elecCell hadCell

Figure 6: UML representation of the heritance relationship between the class caloCell,

elecCell and hadCell

3.3 Work to do

1. Completing the UML diagram shown by Figure 6 by
adding data members and methods. This diagram UML
must be equivalent to the combination of the ones shown
in Figure 4 and Figure 5

2. Remind the 3 kinds of inheritance relationship available in
C++ and their di�erences. What is the most appropriate
one to our case?

8 / 15

1. Implement the class caloCell in the �les caloCell.h and
caloCell.cpp. It is advised to copy/paste at most from the
existed code.

2. Check if the implementation of the class caloCell compiles
properly.

3. Implement the class elecCell in the �les elecCell.h and
elecCell.cpp. It is advised to copy/paste at most from the
existed code.

4. Test the implementation of the class elecCell by instanti-
ating an object.

5. Implement the class hadCell in the �les hadCell.h and
hadCell.cpp. It is advised to copy/paste at most from the
existed code.

6. Test the implementation of the class elecCell by instanti-
ating an object.

9 / 15

4 Array of electromagnetic and hadronic cells

We would like to apply the polymorphism concept through a very simple example: an array
where can be stored electromagnetic cells and hadronic cells.

4.1 Preliminary

Please check that the functions print and getResolution are
implemented into the 3 classes caloCell, elecCell and hadCell.

If it is not the case, implement them. As the function getResolution

inside caloCell has no physical sense, we decide that this function will
return the value −1.

4.2 First contact with polymorphism

Let's consider the following C++ code inside the main function:

1 elecCell* cell1 = new elecCell ();

2 hadCell* cell2 = new hadCell ();

3 caloCell* theCell = cell1;

1. Implement this piece of code in your main function.

2. Which methods are accessible from the pointer theCell?
the ones from elecCell or the ones from caloCell? Test
with your code.

3. Normally the print and getResolution functions are acces-
sible from the pointer theCell. But is it the implementa-
tion of elecCell or caloCell? Test with your code

4. Redo the previous instructions by de�ning the theCell

pointer by : caloCell* theCell = &cell2;

10 / 15

4.3 Use virtual functions

1. Make virtual the functions print and getResolution in the
3 classes.

2. How the virtual property a�ects the behaviour of the pre-
vious piece of code?

4.4 Array of calorimeter cells

1. In the main function, implement an array of caloCell* and
�ll this array with some example pointers to elecCell and
pointers to hadCell.

2. Test the implemented code.

3. An given item of the array is a pointer caloCell* type.
How can we determine if the pointed object is an object
instantiated from the class elecCell or an object instanti-
ated from the class hadCell

4.5 Abstract base class

It the previous piece of code, it is possible to add in the array: pointer to elecCell, pointer to
hadCell but also pointer to caloCell. We would like to forbid to add a pointer to caloCell

because this class does not represent a physical cell: it is just the base class used for designing
elecCell and hadCell. It can be do by making abstract the class caloCell.

1. Explain how it is possible to make abstract a class.

2. Make abstract the class caloCell and test that all works
properly

11 / 15

5 Compiling with GNU make

In spite of its simplicity, the shell script mymake used for building the executable program has
two disavantages. First, each source �le is compiled when the script is launched. For big
project, compiling all �les could take a lot of time and this time could be an issue if only one
source �le has been changed since the last compilation. Secondly, the compilation command
must be repeated in the script as many time as there are source �les. Besides, new compilation
commands must be added if new source �les are created. The manual writing and management
of this script should be painful in the context of big project.

To tackle these two disavantages, project building can be performed by using an advanced
con�guration �le containing generic and compact compilation instructions. This kind of con-
�guration �le is called makefile. Numerous programs allow to interpret the make�le and to
launch automatically the compilation sequence: GNU make (called also gmake), nmake, tmake
... and, unfortunately, each corresponding make�le has a speci�c syntax. The following expla-
nations are based on the example of the most popular tool: GNU make.

5.1 Some words about the program GNU make

The GNU make tool is usually included in every Linux distributions and it is fully operational
on Lxplus session of the students. The corresponding executable program is called gmake or
simply make. To check the presence of this program, you can issue the command below at the
shell prompt: the release version must be displayed at the screen.

bash$make -v

By default, GNU make will look for a make�le called Makefile or makefile. The next sections
of this document are devoted to the syntax of this �le.

5.2 Minimal make�le

Here is explained the simplest way to write a make�le. For explaining the syntax, let has
consider the example of a project made up of a main source �le called main.cpp which use two
classes described in the header/source �les class1.h, class1.cpp, class2.h and class2.cpp.
Building an executable program called main can be performed with the following make�le:

1 # Makefile example

2

3 all: main

4

5 main.o: main.cpp

6 gcc -W -Wall -ansi -pedantic -o main.o -c main.cpp

7

8 class1.o: class1.cpp class1.h

9 gcc -W -Wall -ansi -pedantic -o class1.o -c class1.cpp

10

11 class2.o: class2.cpp class2.h

12 gcc -W -Wall -ansi -pedantic -o class2.o -c class2.cpp

13

14 main: main.o class1.o class2.o

12 / 15

15 gcc -o main main.o class1.o class2.o

16

17 clean:

18 rm -rf *.o main

Listing 1: A simple make�le

Like for shell script, lines begun with # are interpreted as comment lines. The �le is made up
of several instruction blocks called rules. Each rule targets to compile a source �le or to link
the object �les. The generic syntax for a rule is the following:

1 target: dependency1 dependency2 [...]

2 instructions1

3 instructions2

4 [...]

When GNU make treats a target, it analyzes �rst the dependencies. If a dependency is a �le, the
program determines if this �le has been changed since the previous compilation. If a depen-

dency is a target speci�ed in the make�le, the program checks if the target has been treated.
In the case of one dependency has changed or has to be rebuilt, GNU make treats the target
before and execute the instructions. In the other case, the instructions are skipped. Beware:
instructions are preceded by a tabulation character (and not by space characters).

To launch GNU make and to interpret the make�le, just type the following command at the shell
prompt:

bash$make

GNU make looks for the make�le and treats the main rule always called all. Of course, a given
target could be speci�ed to the program by set the target name as an argument of make

command. This is the example of application to the target main:

bash$make main

We focus the user that the following make�le contains a speci�c rules called clean. It is very
useful to remove �les produced by g++ (object �les *.o and executable program) in order to
back to the original source.

bash$make clean

• By analyzing the example above, write a make�le adapted
to the programming project.

• Clean your project with the make�le rule clean (a copy of
the source �le must be saved in a safe place in case of an
unexpected deletion due to a bug in the make�le).

• Compile the project with the make�le.

• Check that if only one �le is changed, only source depend-
ing on this �le are treated in the next GNU make run.

13 / 15

Some developers prefer splitting the clean target into two targets: clean
for removing only temporary �les (object �les) and mrproper for remov-
ing all compiler produced �les (object �les and executable).

5.3 Enriched make�le

The previous make�le example is not really automated. In the next example, internal variables
are used and allow to write compact and generic rules.

1 # Makefile example using variable

2

3 CC=g++

4

5 CFLAGS = -W -Wall -ansi -pedantic

6 SRCS = $(wildcard *.cpp)

7 HDRS = $(wildcard *.h)

8 OBJS = $(SRCS:.cpp=.o)

9 EXEC=main

10

11

12 all: $(SRCS) $(EXEC)

13

14 $(EXEC): $(OBJS)

15 $(CC) $(LDFLAGS) $(OBJS) -o $@

16

17 %.o: %.cpp %.h

18 $(CC) $(CFLAGS) -c $< -o $@

19

20 clean:

21 rm -f *.o $(EXEC)

Listing 2: an automated make�le

De�nition of variables follows the scheme VARIABLE = value. The list of variables used in the
analysed make�le can be found below. Of course, the user can de�ne his/her own variables.

• CC : compiler command

• CFLAGS: compiler options

• SRCS: list of source �les (*.cpp).

• HDRS: list of header �les (*.h).

• OBJS: list of object �les (*.o).

• EXEC : name of the executable program to create.

To access the content of a variable, the syntax is: $(VARIABLE). For information, the special
value $(wildcard *) is very useful because it allows to extract a list of �les from the local

14 / 15

folder sa�sfying a given criterion.

Then there are also some special variables, internal to GNU make which can be used in the
di�erent rules. The two such variables used in the example are very powerful:

• $@: name of the target.

• $<: name of the �rst dependency.

Finally, repeating rule de�nition could be avoided by using automated rules. Thus, the following
rule is applied to every �le ended with '.o'. The character % replace the name of the �les.

1 %.o: %.cpp %.h

2 commands1

3 commands2

4 [...]

• Adapt (if necessary) the automated make�le to the pro-
gramming project.

• Compile your program with the obtained make�le

15 / 15

