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Physical constants and parameters

Paremeters and units

Reduced Planck constant h= 1.055× 10−27 cm2 .g.s−1

Speed of light c = 2.998×1010 cm.s−1

Newton’s constant G = 6.672×10−8 cm3 .g−1 .s−2

Reduced Planck mass MPl = 4.342×10−6 g
= 2.436×1018 GeV/c2

Planck mass mPl =
√

8πMPl = 2.177× 10−5 g
Reduced Planck length LPl = 8.101× 10−33 cm
Reduced Planck time TPl = 2.702× 10−43 s
Boltzmann constant kB = 1.381× 10−16 erg.K−1

Thomson cross section σT = 6.652× 10−25 cm2

Electron mass me = 0.511 MeV/c2

Neutron mass mn = 939.6 MeV/c2

Proton mass mp = 938.3 MeV/c2

Solar mass M◦ = 1.99× 1033 g
Megaparsec 1 Mpc = 3.086× 1024 cm
1 cm = 5.086× 1013 GeV−1 .h
1 s = 1.519× 1024 GeV−1 .h/c
1 g = 5.608× 1025 GeV/c2

1 erg = 6.242× 102 GeV
1 K = 8.618× 10−14 GeV/kB

Parameters

Hubble constant H0 = 100 h km.s−1 .Mpc−1

Present Hubble distance cH−1
0 = 2998h−1 Mpc

Present Hubble time H−1
0 = 9.78 h−1 Gyr

Present critical density ρc,0 = 1.88 h2 × 10−29 g.cm−3

= 2.775 h2 × 1011 M◦/(Mpc)3

=
(

3.000× 10−3eV/c2
)4

h2

Present photon density Ωγ,0 h2 = 2.48× 10−5

Present relativistic density ΩR,0 h2 = 4.17× 10−5

Baryon-to-photon ratio η = 2.68× 10−8 Ωb h2

Matter-radiation equality 1 + zeq = 24000Ω0 h2

Hubble length at equality
(

aeqHeq
)−1 = 14Ω−1

0 h−2 Mpc

Top-hat filter/1012 M◦ M(R) = 1.16 h−1
(

R/1h−1Mpc
)3

Gaussian filter/1012 M◦ M(R) = 4.37 h−1
(

R/1h−1Mpc
)3
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Cosmology in a nutshell

- Cosmology studies the formation and evolution of the universe as a
whole in order to explain its origin, its current status and its future.

- Philosophy and religion were originally the main path to the
understanding of the universe and their properties.

- Nowadays cosmology studies are mainly based on
physical theories: general relativity, quantum physics, statistical physics,
quantum field theory, quantum gravity, etc;
mathematics: statistical description of fields and data;
chemistry and biology: development of life

- Astrophysical observations of our galaxy, other external galaxies, cluster
of galaxies and the Cosmic Microwave Background (CMB) are critical
to understand our universe
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Ancient cosmology

Explaining the universe as we observe it is very old human-kind concern
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Recent physical cosmology history

1915 Einstein. Theory of general relativity

1922-1927 Friedmann-Lemaıtre. Expanding universe and Big Bang

1929 Hubble. Experimental proof of expansion of the universe

1933 Zwicky. First hints of dark matter problems in the Coma cluster

1940 Gamow. Prediction of primordial nucleosynthesis and cosmic
microwave background

1948 Bondi, Gold & Hoyle. Stationary model

1965 Penzias & Wilson. CMB discovery

1970-1980s. Structure formation models

1981 Guth. Inflationary theory

1992 COBE satellite measures CMB anisotropies

1998 SNIa and accelerated expansion of the universe

2000s. Quintessence models for dark energy
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Expanding universe and dark energy

Hubble in 1929 measured recession velocity of galaxies and showed that
universe was expanding

In 1998 the study of the luminosity of SN Ia showed the expansion of the
universe is now accelerated
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Cosmic Microwave Background
Penzias & Wilson discovered in 1965 an isotropic and homogeneous
radiation with a temperature of about 3 K as predicted by Gamow in
1940
the COBE satellite in 1992 showed that the CMB has a black-body
spectrum and fluctuations of about 10−5
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Large-scale structure

galaxy surveys have shown the large-scale structure of the universe
which is formed of voids, clusters of galaxies and filaments

the universe is homogeneous for scales larger than 100 Mpc
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Dark matter
Mass required to keep rotational curves flat is larger than expected from
stars and gas
In merging galaxy clusters the reconstructed matter distribution doest not
peak where gas is observed
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Electromagnetic spectrum
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Summary of main observational facts today

- Galaxy distribution
- the universe is expanding
- small structures form first and combine to form larger ones

- Supernovae type Ia
- currently expansion is accelerated: dark energy

- Cosmic Microwave Background (CMB)
- the universe is isotropic and homogeneous
- universe fully thermalized
- density fluctuations of the order of 10−5

- Abundance of light elements
- Light elements form first from nucleosynthesis

- Dynamics of galaxies and of cluster of galaxies
- Evidence for extra matter component: dark matter and/or modified gravity

theory

J.F. Macı́as-Pérez (LPSC) Lecture 1: Introduction January 22, 2014 13 / 131



Standard Cosmological Model in nut-shell

The standard cosmological model is based on:

1 Big Bang theory
universe expands from a hot and
dense initial point and cool down

2 Λ-CDM model
describes universe energy density

3 Inflation
period of exponential expansion in
the early universe

→ primordial nucleosynthesis and
CMB emission

→ photons, neutrinos, baryon, cold
dark matter, dark energy, (may also
be warm dark matter)

→ produces primordial fluctuations
and solves horizon CMB problem
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FLRW cosmology

The Friedmann-Lemaitre-Robertson-Walker (FRW) cosmology is based on:
1 The cosmological principle: the universe is isotropic and homogeneous

on large scales
2 General Relativity (GR) theory:

A metric to describe the geometry of space-time: tells matter how to move
Einstein field equations: matter tells geometry how to curve

3 Multi-component energy density: photons, neutrinos, baryons,
non-relativistic matter, dark energy and curvature

NB: Conceptually it is useful to separate geometry and dynamics to
understand alternative cosmologies, e.g.

Break homogeneity and isotropy assumptions under GR

Modify gravity theory while keeping the geometry
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General Relativity (GR)
Based on the equivalence principle that postulate that the laws of physics
takes the same form in all reference frames (even those freely falling)

Proper time is invariant and defines the metric gµν

ds2 = gµνdxµdxν1, xµ = (c dt, dx, dy, dz)

The metric defines the curvature of space-time

The metric evolves accordingly to Einstein field equations

Gµν = Rµν −
1
2

gµνR = −8πGTµν

where Rµν and R are the Ricci tensor and scalar respectively and G the
gravitational constant

Tµν is the stress-energy tensor that evaluates the effect of a given
distribution of mass and energy on the space-time curvature

1We use here the repeated symbol sum convention
∑3
µ=0

∑3
ν=0
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Robertson-Walker metric
In 1930 Robertson and Walker independently showed that the most general
metric possible for describing an expanding universe is

ds2 = (c dt)2 − a2(t)
[

dr2

1− kr2 + r2 (dθ2 + sin2 θ dφ2)]
where (r, θ, φ) are spherical comoving coordinates and a(t) is the scale factor

Spatial geometry is that of a constant
curvature:

k = 0 flat geometry universe

k = −1 open universe

k = +1 closed universe
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Horizon

Distance travelled by a photon in the whole lifetime of the universe
defines the horizon

For photons ds =0, so we have that

Dhorizon(t) =

∫ t

0

dt′

a(t)
= η(t)

η(t) is also called the conformal time

Two points in the universe are in casual contact if their distance is
smaller than the horizon

Horizon problem: why is the universe isotropic and homogeneous on
large scales ? The observable universe is today larger than the horizon
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Redshift

Wavelength of light stretches with
the scale factor

Given a physical rest wavelength
at emission λ0, the observed
wavelength today λ is

λ =
1

a(t)
λ0 ≡ (1 + z)λ0

Interpreting the redshift as a
Doppler shift, objects recede in
an expanding universe

Today z = 0 and it increases back
on time
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Deceleration parameter and elapsed time
The deceleration parameter q0 is defined by the series

a(t) = a(t0)

[
1 + H0(t − t0)− 1

2
H2

0q0(t − t0)2 + . . .

]
Taylor expanding a(t) we obtain

q0 = − ä(t0)a(t0)

ȧ(t0)

From above we deduce

1 + z = 1 + H0(t − t0) + H2
0(t0 − t)2

[
1 +

q0

2

]
+ . . .

and inverting

t0 − t =
1

H0

[
z− z2

(
1 +

q0

2

)
+ . . .

]
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Cosmological distances
Proper distance, time for a photon to go from z to z + dz

dpr = −cdt = −c
da
ȧ

Comobile distance between observer at z and emitter at z + dz

dcom = −c
dt
a

= −c
da
ȧa

Luminosity distance, dL such that the observed flux, `, of a source of
absolute luminosity L is ` = L

4πd2
L
,

dL =
c

H0

[
z +

1
2

(1− q0)z2 + . . .

]
Diameter angular distance, relates angular size ∆θ and physical size, D
of a source

dA =
D

∆θ
=

dL

(1 + z)2
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Cosmological distances
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Cosmic Distance Ladder

Cepheids

Parallax: Hipparcos 0-300 pc
(GAIA 5 kpc)

Cepheids: 100 pc - 20 Mpc (HST)

Type Ia SNe: 20 - 400 Mpc
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Friedmann-Lemaitre equations
Apply the Einstein field equations to the R-W metric

Gµν = −8πG Tµν

From the LHS we obtain

G0
0 = − 3

a2

[(
ȧ
a

)2

+
1

R2

]

Gi
j = − 1

a2

[
2

ä
a
−
(

ȧ
a

)2

+
1

R2

]
for the RHS isotropy demands that

T0
0 = ρ

T i
j = −pδi

j

where ρ is the energy density and p the pressure
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Dynamics of the universe

Finally the FL equations stand(
ȧ
a

)2

+
1

R2 =
8πG

3
a2ρ

2
ä
a
−
(

ȧ
a

)2

+
1

R2 = −8πGa2p

and can be combined into a single one

ä
a
−
(

ȧ
a

)2

= −4πG
3

a2 (ρ+ 3p) = a
d2a
dt2
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Curvature and critical density

The first FL equation can be written as

H2(a) ≡
(

ȧ
a

)2

=
8πG

3
(ρ+ ρk) ≡

8πG
3
ρc

ρc is the critical system and its value today is

ρc(z = 0) =
3H2

0
8πG

= 1.8788× 10−29h2g cm−3

Curvature as an effective energy density component

ρK = − 3
8πGa2R2
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Total energy density

Energy density today can be given as a fraction of critical density

Ωtot ≡
ρ

ρc(z = 0)

Note that physical energy density is ∝ Ωh2 (g cm−3)

Likewise the radius of curvature is given by

ΩK = (1− Ωtot) =
1

H2
0R2
→ R = (H0

√
Ωtot − 1)−1

Ω value defines universe geometry
Ωtot = 1, flat universe
Ωtot > 1, positively curved
Ωtot < 1, negatively curved
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The multi-component universe
We define the equation of state as p = w ρ

Universe consists of multiple components:
1 NR matter ρm = mnm ∝ a−3,wm = 0
2 R radiation ρr = Enr ∝ νnr ∝ a−4,wr = 1/3
3 curvature ρk ∝ a−2,wr = −1/3
4 (cosmological) constant energy density ρΛ ∝ a0,wΛ = −1

total energy density summed over all components

ρ(a) =
∑

i
ρi(a) = ρc(a = 1; z = 0)

∑
i
Ωia−3(1+wi)

density evolves as

ρ(a) = ρc(a = 1)
∑

i
Ωi exp−

∫
d log a3(1+wi)

and the Hubble constant as

H2(a) = H2
0 exp−

∫
d log a3(1+wi)
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General solutions of FL equations

Radiation domination

H2 ∝ a−4, a(t) ∝ t1/2, H(t) =
1
2t
, RH = 2ct

Matter domination

H2 ∝ a−3, a(t) ∝ t2/3, H(t) =
2
3t
, RH =

3
2

ct

Curvature domination k < 0

H2 ∝ a−2, a(t) ∝ t, H(t) =
1
t
, RH = ct

Dark energy domination

H2 → constant, a(t) ∝ exp(Λt/3), H(t) = c/RH =
√

Λ/3
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Hubble constant evolution
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A first set of cosmological parameters and relations
H0 Hubble constant
Ωk Curvature energy density
Ωm Matter density
ΩΛ Dark energy density
ΩCDM Cold Dark matter density
Ωb Baryonic matter density
Ωγ Photon density
Ων Neutrino density

(1− Ωk) = Ωtot = Ωm + ΩΛ

Ωm = ΩCDM + Ωb + Ωγ + Ων

Deceleration parameter
q0 = 1

2ΩNR
m − ΩΛ

H2(z) = H2
0(ΩR

m(1 + z)4 + ΩNR
m (1 + z)3 − Ωk(1 + z)2 + ΩΛ) = H2

0E(z)2
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Motivations for inflation
Inflation was motivated by a set of problems encountered by Big Bang theory

Flatness problem
The universe is observed to be flat today to a great accuracy however the
flat solution of the FL equations is unstable

Relic abundances
Phase transitions in the early universe will lead to relic particles like for
example monopoles that are not observed today

Horizon problem
CMB temperature is uniform and isotropic all over the sky however
regions of the sky separated by more than one degree were not in casual
contact at the time of CMB formation

Origin of cosmological fluctuations
All observed structures in the universe were formed by the growth up of
primordial fluctuations for which we have no explanation
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Accelerated expansion

To solve the horizon, flatness and relics problem we need

d
dt

(
1

aH

)
< 0⇒ ä > 0⇒ ρ+ 3p < 0

So acceleration implies negative pressure p < −1/3ρ

We define the number of e-folds as

N = ln
ai

af

where ai and af correspond to the scale factors at beginning and end of
the accelerated expansion period

Notice that N represents some how the amount expansion

To solve the horizon, flatness and relics problems we need N ≥ 60
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Scalar fields in cosmology

For a FRWL universe the dynamics of a scalar field is given by

φ̈+ 3Hφ̇− ∇
2φ

a2 + V ′(φ) = 0

For FRWL universe and assuming φ = φ0 + δφ we obtain for the
homogeneous field

ρφ =
1
2
φ̇2 +

(∇φ)2

2a2 + V(φ)

pφ =
1
2
φ̇2 − (∇φ)2

6a2 − V(φ)

So we can write FL equation

H2 =
8πG

3
ρφ −

k2

2
∼ 8πG

3
ρφ
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Slow roll dynamics

We can obtain accelerated expansion of the universe from the scalar field
dynamics

1 We neglect the term ∇2φ
a2 (somehow diluted by expansion)

2 We assume φ̇
2 � V(φ) we have pφ ∼ −ρφ and thus

H2 ∼ 8πG
3

V(φ)

3 We assume φ̈� 3Hφ̇

Thus :
H2 ' 8πG

3
V

3Hφ̇+ V ′ ' 0
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Slow roll parameters

Net energy is dominated by potential energy and thus acts like a
cosmological constant w→ −1

First slow roll parameter

ε ≡ 3
2

(1 + w) =
1

16πG

(
V ′

V

)2

Second slow roll parameter

δ ≡ φ̈

φ̇

(
ȧ
a

)
− 1 = ε− 1

8πG
V ′′

V
= ε− η

Slow roll conditions imply ε, δ, |η| � 1, corresponding to a very flat
potential

We normally define the reduced Planck mass as MP = 1
8πG
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Potential slowly rolling down
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Cosmic Microwave Background
Penzias & Wilson discovered in 1965 an isotropic and homogeneous
radiation with a temperature of about 3 K as predicted by Gamow in
1940
the COBE satellite in 1992 showed that the CMB has a black-body
spectrum and fluctuations of about 10−5
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Cartoon thermal history of the universe
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Detailed thermal history of the universe

Event T (K) kT (eV) geff z t
Now 2.76 0.0002 3.43 0 13.6 Gyr
First Galaxies 16 0.001 3.43 6 (?) ∼ 1 Gyr
Recombination 3000 0.3 3.43 1100 38000 yr
M-R equality 9500 0.8 3.43 3500 50000 yr
e+-e− pairs 109.7 0.5 106 11 109.5 3 s
Nucleosynthesis 1010 1 106 11 1010 1 s
Nucleon pairs 1013 1 109 70 1013 10−7 s
E-W unification 1015.5 25 1010 100 1015 10−12 s
GUT 1028 1024 100 (?) 1028 10−38 s
Quantum Gravitiy 1032 1028 100 (?) 1032 10−43 s
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3 Eras: radiation, matter and dark energy
The energy density of radiation, matter and dark energy (DE) evolves
differently

radiation : ρR ∝ a−4

matter : ρM ∝ a−3

DE : ρΛ = constant

So, the total density of the universe can be written as

ρ = ρc
(
ΩRx4 + ΩMx3 + ΩΛ

)
; x = 1 + z

Matter-radiation equality is obtained when ρM = ρR at

z =
ΩM

ΩR
− 1 ∼ 3402

Matter-DE equality when ρM = ρΛ at

z =

(
ΩΛ

ΩM

)1/3

− 1 ∼ 0.29
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3 Eras: radiation, matter and dark energy
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Thomson Scattering
Thomson scattering of photons off of free electrons is the most important
CMB process with a cross section (averaged over polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25 cm2

Density of free electrons in a fully ionized xe = 1 universe is given by

ne = (1− Yp/2)xenb ≈ 10−5Ωbh2(1 + z)cm−3

,
In general we can write the Thomson scattering rate as

Γ = τ ′ = σtanexe

where τ is the medium optical depth
The visibility function g(η) = −τ ′e−τ indicates the probability that a
CMB photon last scattered at conformal time η
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Recombination
When temperature drops to ∼ 1000 K it is thermodynamically favorable
for the plasma to form atoms via

p + e− ↔ H + γ

This is called recombination.
If thermal equilibrium hods then the number density of each species is

ni = gi

(
miT
2π

)3/2

exp
(
µi − mi

T

)
and chemical equilibrium impose

µe + µp = µH

As mH ∼ mp and defining BH = mp + me − mH = 13.6 eV we have

nH =
fH

gpge
nenp

(
miT
2π

)3/2

exp (BH/T)
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Ionization fraction evolution
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Recombination in a nutshell

The Thomson scattering rate evolves as Γ ∝ a−2xe

The free electron fraction xe starts from 1 at high redshift.
Thus, before recombination Γ� a′

a and the universe is opaque
At recombination, about z ∼ 1080, xe decreases sharply and freezes at a
very small value
Then, after recombination Γ� a′

a and the universe is transparent
At reionization all electrons are free again, however because dilution ne

is small and Γ remains much smaller than a′
a and so most photons do not

interact any more
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Last Scattering Surface

Interaction between electrons and
photons via Thomson scattering
before recombination and after
reionization

Angular distribution of radiation
is the 3D temperature field
projected onto a shell - surface of
last scattering

Integrate along the line of sight in
an expanding universe

Describe radiation as an
statistically isotropic temperature
field with fluctuations
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Brief history of CMB observations

Penzias & Wilson discovered in 1965 an isotropic and homogeneous
radiation with a temperature of about 3 K

In 1992 the COBE satellite demonstrated that the CMB has a black-body
spectrum and fluctuations of about 10−5

In 1998 Boomerang and Maxima measured the so-called acoustic peaks
in the CMB power spectrum

The WMAP satellite, launched in 2001, provided first CMB polarization
precise measurements

The Planck satellite 2013 results has provided best possible CMB
temperature anisotropies measurements and much more (polarization
analysis expected in 2014)

Late 2013 the South Pole telescope and the PolarBear experiment
reported first observation of B-lensing modes
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Observing the sky
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Foregrounds
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CMB instruments

Radio mm
Telescopes dish and horns dish and horns
Detectors HEMT + square law detectors bolometer and/or KIDs
Cooling 18-50 K 100-300 mK
Observing mode Ground, satellite ground, balloon, satellite
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CMB black-body spectrum
Compton scattering of photons with electrons is very efficient to
thermalize photons
In 1994 the FIRAS spectrograph in the COBE satellite measured the
CMB temperature: TCMB = 2.726± 0.001 K
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Measured CMB anisotropies I
Dipole anisotropy induced by Doppler effect (relative motion of the
observer with respect to the CMB rest frame)
First measured by the COBE satellite in 1992 with an amplitude of
3.358± 0.001± 0.023 mK in the direction of
(l,b)=(264.31± 0.04± 0.16,+48.05± 0.02± 0.09) degrees
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The micro-wave and mm sky
We observe a mixture of components: CMB, galactic thermal dust,
synchrotron and free-free emissions, extragalactic emission from dusty
and radio galaxies
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From sky observations to CMB maps

Component separation algorithms are used to recover the CMB emission
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Measured CMB anisotropies II
Temperature fluctuations of the order of 10−5

Planck satellite 2013 results: most precise measurements of the CMB
temperature anisotropies
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Spherical harmonics and power spectrum

Any scalar field on the sphere, A(θ, φ) can be decomposed into spherical
harmonics

A(θ, φ) =
∑
`

+∑̀
m=−`

a`mY`m(θ, φ)

We can define the power spectrum as

C` =< a`ma∗`m >=
1

2`+ 1

∑
m

|a`m|2

For a Gaussian random field then

< a`ma∗`′m′ >= C`δ``′δmm′
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The Boltzmann equation
Photons decouple from baryons at recombination so we can not describe
them with fluid equations
Need to solve the Boltzmann equation for the photon space-phase
distribution

d
dη

fγ(η, x,q) = C[fγ(η, x,q), fe(η, x,q)]

at first order in perturbation
Notice that as discussed above electrons and baryon are so tightly
coupled that it makes no difference to think in terms of photon-electron
coupling or photon-baryon coupling
In thermal equilibrium the space-phase photon distribution function
behaves as a Bose-Einstein distribution

fγ(η, x,q) =
1

e
q

T(η,x) − 1
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Perturbations
We expand the photon space-phase distribution function as a background
part and first order perturbation fγ = f̄γ + δfγ and so

f̄γ(η, x,q) =
1

e
q

T̄(η)+δT(η) − 1

and

δfγ(η, x,q) =
df̄γ

d log q
δT(η, x)

T̄(η)

Therefore, we can replace fγ(η, x,q) by the brightness function

Θ(η, x) ≡ δT(η, x)

T̄(η)

In an inhomogeneous universe photons travelling on different geodesic
(line-of-sights) experience different redshifts so

Θ(η, x,n) ≡ δT(η, x,n)

T̄(η)

J.F. Macı́as-Pérez (LPSC) Lecture 3: CMB January 22, 2014 66 / 131



Spherical harmonic decomposition
The brightness function can be decomposed in Fourier modes such that

Θ(η, x,n) =

∫
dk3

(2π)3 Θ(η,k,n)eik.x

with power spectrum

< Θ(η,k,n)Θ∗(η,k′,n) >= (2π)3PΘ(η,n)(k)

Finally Fourier modes can be decomposed in spherical harmonics taking
into account the fact that the propagation direction of photons is −n

Θ(η,k,n) =
∑
`,m

(−1)`Θ`,m(η,k)Y`.m(n)

or equivalently in Legendre polynomials

Θ(η,k,n) =
∑
`

(−1)`(2`+ 1)Θ`(η,k)P`(k.n/k)
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Power spectrum of the CMB anisotropies
We want to compute the power spectrum of the temperature field today
as observed from our position, x = 0, today η = η0

δT
T̄

(n) = Θ(η0, 0,−n) =
∑
`m

a`mY`m(n)

Using previous results and Legendre polynomials to spherical harmonic
relations we can write

a`m =
4π

(2π)3 (i)`
∫

d3kY`m(k)Θ`(η0,k)

Using the orthonormality of spherical harmonics we can write

C` = 4π
∫ ∞

0
∆2

Θ`
(η0, k)

dk
k

and using the transfer function we obtain

C` = 4π
∫ ∞

0
T2

Θ`
(k)∆2

R(k)
dk
k
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CMB temperature power spectrum
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CMB power spectrum and cosmological parameters

(P1) Peak Scale Ωm, Ωb, ΩΛ

(P2) Odd/even peak amplitude ratio Ωb
(P3) Overall peak amplitude Ωm

(P4) Damping enveloppe Ωm, Ωb, ΩΛ

(P5) Global Amplitude As

(P6) Global tilt ns

(P7) Additional SW plateau tilting via ISW ΩΛ

(P8) Amplitude for l > 40 only τreio
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CMB temperature power spectrum and parameters
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Planck measured CMB temperature spectrum
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Measured CMB temperature spectrum at small angular
scales
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L. 3, Section 5: Secondary CMB temperature anisotropies
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Main secondary temperature anisotropies

We call secondary CMB anisotropies those that are generated after
recombination either by gravitational effects of interaction of photons with
electrons:

Integrated Sachs Wolfe (ISW) effect: Sachs-Wolfe effect originated by
changes in the gravitational potentials along the line-of-sight. The
non-linear contribution is generally called Vishniac effect.

Gravitational Lensing: gravitational lensing induced by mass distribution
along the line-of-sight

Sunyaev-Zel’dovich effect: Compton inverse between CMB photons and
hot free electrons on clusters of galaxies

Reionization: Thomson interaction of CMB photons with free electrons
at the time global reionization of the universe when first star form.
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Gravitational lensing in a nutshell

Gravitational potentials along the line of sight n to some source at
comoving distance Ds gravitationally lens the image

We can define an effective potential

φ(n) = 2
∫

dD
Ds − D

DDs
Φ(Dn, η(D))

such that the image is remapped as

nI = nS +∇nφ(n)

In the case of CMB lensing we are in the weak lensing regime and we
expect small distortions of the image

In particular we can observe that the convergence is simply the projected
mass
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CMB lensing cartoon
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Integrated gravitational potential
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Lensing power spectrum
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Lensing power spectrum
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Sunyaev-Zeldovich (SZ) effect

Thermal (t)SZ effect corresponds to a small spectral distortion of the
CMB spectrum

∆TtSZ

TCMB
= f (x)y = f (x)

∫
ne

kBTe

mec2σTd`

where x = hν
kBT and

f (x) =

(
x

ex + 1
ex − 1

− 4
)

Kinetic (k)SZ effect If clusters are moving with respect to the CMB
frame there is an additional spectral distortion due to the Doppler effect
of the cluster bulk velocity on the scattered CMB photons. In the
non-relativistic limit the kSZ is just a thermal distortion

∆TkSZ

TCMB
= −τe

(vpec

c

)
= −

∫
neσT

(vpec

c

)
d`
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tSZ effect with Planck
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Examples of cluster of galaxies observed via the tSZ effect
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The COMA cluster

Detailed observations of the Coma cluster including the outskirts

Direct observation of compression shocks on the tSZ data
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The Planck cluster sample

1227 cluster candidates: 861 clusters and 366 candidates being
confirmed
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Compton parameter map
All-sky map of cluster of galaxies and maybe filaments
Unfortunately foreground contribution is important, more work needed,
keep tuned next year.
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Cluster number counts and cosmology
Clusters of galaxies are the largest gravitational bound structures in the
universe and can be assimilated to dark matter halos
The number of cluster of galaxies in terms of their mass and redshift is
very sensitive to cosmological parameters and non-linear physics
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Experimental astroparticle physics & cosmology
L. 4, Section 1: polarization power spectra
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J.F. Macı́as-Pérez (LPSC) Lecture 4: CMB polarization January 22, 2014 88 / 131



Stokes parameters
Polarised light can be described using Stokes parameters
For a light beam propagating on the z direction, the polarization plane is
defined by x− y plane
The electric field can be decomposed as

E(t, z) = Ex(t, z)ex + Ey(t, z)ey

where Ex(t, z) and Ey(t, z) are plane waves

Ex(t, z) = Axeφxei(kz−wt)

Ey(t, z) = Ayeφyei(kz−wt)

Stokes parameters are defined are

I =< ExE∗x + EyE∗y >= A2
x + A2

y
Q =< ExE∗x − EyE∗y >= A2

x − A2
y

U =< ExE∗y + EyE∗x >= 2AxAy cos (φy − φx)

V = −i < ExE∗y − EyE∗x >= 2AxAy sin (φy − φx)
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Stokes parameters II
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Stokes parameters III: some special cases

1 Right-handed (left handed) circularly polarised light, Ex = Ey and
cos (φy − φx) = ±π

2
I = S
Q = 0
U = 0
V = ±S

2 Linearly polarized light cos (φy − φx) = 0

I = S
Q = pS cos (2ψ)
U = pS sin (2ψ)
V = 0

where p =

√
Q2+U2

I and ψ are the degree and polarization angle.
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Linear polarization properties

In the case of linearly polarised light a change of reference frame modify
the Stokes parameters as follows

I′ = I
Q′ = Q cos (2θ) + U sin (2θ)
U′ = −Q sin (2θ) + U cos (2θ)

So we can form a spin ±2 object Q± iU that transforms as

Q′ ± iU′ = e∓2iθ[Q± iU]

Thus, Stokes parameters on the sphere can be decomposed as

T(n) =
∑

`m aT
`mY`m(n)

[Q± iU] =
∑

`m[aE
`m ± iaB

`m] ±2Y`m(n)
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polarization power spectra

We can define three scalar fields T,E,B which are independents of the
chosen reference frame

Using those we can form 3 auto-power spectra

CTT
` = 1

2`+1
∑

m |aT
`m|2

CEE
` = 1

2`+1
∑

m |aE
`m|2

CBB
` = 1

2`+1
∑

m |aB
`m|2

and 3 cross-spectra

CTE
` = 1

2`+1
∑

m(aT
`maE

`m
∗
)

CTB
` = 1

2`+1(
∑

m(aT
`maB

`m
∗
)

CEB
` = 1

2`+1
∑

m(aE
`maB

`m
∗
)

CTB and CEB vanish if parity is conserved
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Thomson scattering

As discussed before polarization state of radiation along the line-of-sight
is described by the components of the electric field E
The differential cross section of Thomson scattering is given by

dσ
dΩ

=
3σT

8π
|E′.E|2

where E′ and E are the incoming and outgoing directions of the electric
field

To get final polarization state along the line-of-sight n we sum over angle
and incoming polarization ∑

i=1,2

∫
dn′

dσ
dΩ
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Cartoon polarization generation

Only quadrupole anisotropies generate polarization
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Local quadrupole perturbations

In hot and cold spots electrons
observes local quadrupoles

Density, scalar, perturbations
produce Qr polarisation
corresponding to E modes
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Local quadrupole perturbations and gravitational waves

Gravitational waves distort the polarization pattern and induce also Ur

polarization which corresponds to E and B modes
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WMAP hot and cold spots polarization
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Planck hot and cold spots polarization
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Expected CMB polarization power spectra
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Measured CMB polarisation power spectra before planck
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Planck measured CMB polarisation power spectra
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Planck measured CMB polarisation power spectra
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Large-scale structure

galaxy surveys have shown the large-scale structure of the universe
which is formed of voids, clusters of galaxies and filaments

the universe is homogeneous for scales larger than 100 Mpc
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Inhomogeneous Universe

Inflationary theory predicts small curvature and tensor fluctuations

Inhomogeneities in the matter-energy distribution grow via gravitational
instability

In the expanding universe, growth rate is a power law
Follow general principles of FRW/ Thermal History but drop
homogeneity and isotropy

Matter evolves in a perturbed geometry, conserving stress-energy tensor
Matter curves geometry, cosmological Poisson equation generates
gravitational potential from density perturbations
Use linear perturbation theory to derive evolution equations
Use extra closure relations in addition to average equation of state
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Inhomogeneous Fields

As for homogeneous cosmology, a full description of matter is given
through the phase space distribution

f (x,q, t)

where momentum dependence q describes bulk motion of particles

Thus, energy density and pressure are functions of position

ρ(x, t) = g
∫

d3q
(2π)3 f (x,q, t)E

and

p(x, t) = g
∫

d3q
(2π)3 f (x,q, t)

|q|2

3E

and can be considered as low order moments of the distribution function
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Inhomogeneous Boltzmann Equation

Evolution of density inhomogeneities is governed by the Boltzmann
equation as in the homogenous case

We work now on comoving representation: conformal time η, comoving
coordinates x and retains physical momentum

Then we have as before

f ′ + q′
∂f
∂q

+ x′.
∂f
∂x

= C(f )

where ′ corresponds to derivative with respect to conformal time and
C(f ) is the collision term

These formulation will be important mainly for photons and baryons and
cold dark matter although fully decouple can be consider as a perfect
fluid to first order approximation
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Summary of homogeneous and isotropic universe results

We have perfect fluids such that p = wρ

Energy conservation

ρ̇a3 + 3(ρ+ p)ȧa2 = 0

FL equations

H2 =
8πG

3
ρ

Solutions of the FL equations
w ρ(a) a(t) H(t)

radiation 1/3 a−4 t1/2 1
2 t−1

matter 0 a−3 t2/3 2
3 t−1

Λ −1 + ε H0 eH0t H0
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Linear Perturbation Theory
We assume perturbations are small enough to be in the linear regime so
for example

ρ(x, t) =< ρ(x, t) > +δρ(x, t) = ρ0(t) + δρ(x, t)

where ρ0 is the background density (homogeneous like)
The evolution of the background term is given by the FL equations
studied in Lecture 2
We can also define contrast quantities, as for example the density contrast

δρ =
δρ(x, t)
ρ0(t)

Linear perturbation theory can applied to all physical quantities and in
particular to the metric and the stress-energy tensor

gµν = gRW
µν (t) + δgµν(x, t)

Tµν = Thom
µν (t) + δTµν(x, t)

where RW stands for the Robertson-Walker metric and hom for the
homogenous stress-energy tensor
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Metric perturbations

The perturbed metric δgµν(x, t) is a symmetric 4x4 tensor and therefore
will have 10 degrees of freedom

Bardeen in 1980 proved that these can be described on the basis of
scalar, vectors and tensors perturbations

In a general form, for a flat universe and using conformal time we can
write for an homogenous space

ds2 = a2(η)(d2η − dx2 − dy2 − dz2)

and thus the perturbed version reads

ds2 = a2(η)[(1 + 2φ)d2η + Bidxidη − {(1− 2ψ)δij + hij}dxidxj]

with
∑

i hii = 0
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Metric perturbations: degrees of freedom

The generalized gravitational potential, ψ (1 scalar dof)

Local distortions of the average scale factor, φ (1 scalar dof)

Longitudinal and transverse components of Bi = B||i + B⊥i
longitudinal B||i = ∂b

∂i = ~∇b (1 scalar dof)
transverse B⊥i (2 vectorial dof)

We can also decompose tensors as hij = hT
ij + h||ij + h⊥ij

Transverse hT
ij with ∂ihT

ij = 0 (2 tensor dof)

divergence longitudinale h||ij = 2(∂i∂j − 1
3∇

2µ (1 scalar dof)
divergence transverse h⊥ij = ∂iAj + ∂jAi (2 vector dof)

So we have in total 10 dof : 4 scalars + 4 vectors + 2 tensors)

We do not consider vector modes that decay very rapidly

To many degrees of freedoms, need to have close relations
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Lecture 5: Linear Cosmological Perturbation

Theory January 22, 2014 113 / 131



Stress-energy tensor perturbations
For a perfect fluid we have

Tµν ≡ −pgµν + (p + ρ)UµUν

Perturbing it to first order with Uµ = (1, vi, vi, vi) and vi small

T0
0 = ρ = ρ̄+ δρ (1 dof)

∂iT0
i = (ρ̄+ p̄)vi (2 + 1 dof)

T i
j = −pδij = −(p̄ + δp)δij (1 dof)

As before vi = v||i + v⊥i , the scalar degree of freedom is obtained from

θ = ∂ivi

An extra scalar degree of freedom is hidden in the tensor component of
the perturbation Σ

||
ij = (∂i∂j− 1

3∇
2δijσ̄ from which we define the

anisotropic stress

(ρ̄+ p̄)∇2σ = −∂i∂j −
1
3
∇2δijΣ

i
j (1 dof)
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Stress-energy tensor perturbations degrees of freedom
Finally we have the following scalars degrees of freedom

1

T0
0 = ρ̄(1 + δ)

2

∂iT0
i = (ρ̄+ p̄)θ

3

T i
i = −3(p̄ + 3δp)

4

−∂i∂j −
1
3
∇2δijT i

j = (ρ̄+ p̄)∇2σ

Anisotropic stress is generally neglected so σ = 0

We will consider no pure vector perturbations neither

Tensors perturbations comes only from the metric
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A few words on gauges
For an idealized FLRW universe there is only a single choice of time
slicing compatible with homogeneity

For a perturbed universe there is an infinity of time slice choices
compatible with linear perturbation hypothesis

As δρ(t, x) = ρ(t, x)− ρ̄(t), we observe that the perturbation value
would depend on the time slicing

A gauge is a choice of time slicing.

Gauge transformations are induced by coordinates transformations of the
form xµ ← xµ + εµ that maps the points of one time slicing to another

Physics should not depend on gauge transformations and so we can fix
some degrees of freedoms: 2 for scalar perturbations

We can define gauge invariant quantities as the Bardeen potentials ΦA

and ΦH

Either we work with gauge invariant quantities or with particular gauge
choice

J.F. Macı́as-Pérez (LPSC)
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Back to inflation
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Working on Fourier space

We define the comoving wavelength λcom and wave number k as

λcom =
2π
k

=
λ

a

where λ is the physical wavelength of the perturbation

For perturbations outside the horizon we have

k < 2πaH

and inside the horizon
k > 2πaH

As we did before we define the power spectrum as

< δA(k1, η)δ∗A(k2, η) >= PA(k, η)δ(k1 − k2)
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Transfer function

Before we have seen that for super Hubble modes the perturbations
remain constant and then for any perturbation A(η, x) we can write

< A(η,k1)A(η,k2) >= δ(k2 − k1)PA(k)

As physics is linear we can imagine a linear function such that

A(η,k) = TA(k, η)A(η0,k) = TA(k, η)A(k)

and so
PA(η,k) = T2

A(k, η)PA(k)

In the case of adiabatic conditions we can set a common initial
perturbation using the Baardeen curvatureR = φ− 1

3
δρtot

ρ̄tot+p̄tot
such that

PA(η,k) = T2
A,R(k, η)PR(k) =

2π
k3 T2

A,R(k, η)∆2
R(k)
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Cartoon evolution of perturbations
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Experimental astroparticle physics & cosmology
L. 5, Section 2: Dark matter power spectrum

J.F. Macı́as-Pérez
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Matter power spectrum definition

We are interested in computing the power spectrum of the
non-relativistic matter density perturbation

δm =
δρm

ρ̄m
=
δρb + δρCDM

ρ̄b + ρ̄CDM

Thus, the matter power spectrum is

< δm(η,k1), δm(η,k2) >= δD(k2 − k21)P(η, k)

Accounting for adiabatic initial conditions and using the curvature power
spectrum we can write

P(η, k) =
2π
k3 AS

(
k
k∗

)ns−1

T2
δm

(η, k)

where AS is a normalization factor for k = k∗
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Computing the evolution of the transfer function
Let’s assume CDM dominates the matter density Ωb � ΩCDM and so
δm ≈ δCDM

Using the continuity and Euler equations for CDM perturbations (we
saw before CDM behaves like pressureless perfect fluid, σ = w = 0)

δ′′CDM +
a′

a
δ′CDM = −k2ψ + 3φ′′ + 3

a′

a
φ′

For an expanding universe the clustering rate will depend on the
expansion rate
For k < aH (super Hubble) the perturbations remain constant
For k > aH we neglect dilation terms and then we can deduce the
Mészáros equation

δ′′CDM +
a′

a
δ′CDM −

3
2

(
a′

a

)2

ΩCDM(a)δCDM = 0

The Mészáros equation is obtained by combining previous equation with
(00) component of the Einstein equations and the FL equations
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Solutions to Mészáros equation

1 For a radiation dominated universe a ∝ η and ΩCDM � 1 so we can
neglect the las term in the equation and so

δCDM = constant or δCDM ∝ log (η)

so perturbation growth logarithmically
2 For a matter dominated universe a ∝ η2 and ΩCMB ' 1 and so the

solutions are
δCDM ∝ η−3 or δCDM ∝ η2

so it growth quadratically with η
3 For dark energy dominated universe δCDM growths at smaller rate than

for matter domination (i.e. slower than η2 and this reduction of the
growth rate does not depends on k
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Cartoon matter fluctuations evolution
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Cartoon matter power spectrum evolution
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Baryon corrections to the matter power spectrum

Baryons modify the shape of the power spectrum introducing baryon
acoustic oscillations (BAO) and power suppression at k > keq

BAO are produced by the Thomson interaction of photons and electrons
before decoupling. The photon pressure will counter balance
gravitational collapse.

BAOs can be observed both on CMB and Large Scale Structure however
the mean time of formation of the oscillations is not the same and so
neither their characteristic scale.

For CMB BAO are frozen at decoupling while for baryons they are
frozen at baryon drag (last time baryons interacted)

Full study of BAOs requires to solve the Boltzmann equation. We will do
this for CMB next lecture.
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BAO in the matter power spectrum
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Lecture 5: Linear Cosmological Perturbation

Theory January 22, 2014 129 / 131



Parameter dependence of the matter power spectrum

(P1) The time of equality determines the peak of the spectrum.

(P2) Baryon abundance (relative to CDM) determines suppression at k > keq

and also BAOs features

(P3) The baryon drag scale rs(ηdrag) depends mainly on Ωb

(P4) The global amplitude of the spectrum depends on the primordial
spectrum amplitude As but also on ΩΛ because of growth suppression

(P5) The global tilt of the spectrum depends on the primordial spectrum tilt, ns
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Observed matter power spectrum
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