QCD Corrections to Weak Vector Boson Production Associated to Heavy Quark Jets at Hadron Colliders

W/Zbb & Wb @ NLO

Fernando Febres Cordero UCLA LoopFest VII, Buffalo, May 2008

In collaboration with:

Laura Reina and Doreen Wackeroth [hep-ph/0606102] - arXiv:0801.2374 [hep-ph] - arXiv:080X.XXXX [hep-ph]

and John Campbell, Fabio Maltoni and Scott Willenbrock arXiv:080X.XXXX [hep-ph]

o Introduction

- Weak bosons and b-jets
- > W/Z b bbar production with $m_b \neq 0$
- > Wb

• The Calculation & Results

- > Z+2b-jets
- W+2b-jets (backgrounds to single-top and t tbar production)
- ≻ Wb

Summary and Outlook

Introduction

TEVATRON $B_{\rm s}^0 - \bar{B}_{\rm s}^0$ oscillation frequency

Introduction

TEVATRON $B_{\rm s}^0 - \bar{B}_{\rm s}^0$ oscillation frequency

Single top evidence

TEVATRON $B_{s}^{0} - \bar{B}_{s}^{0}$ oscillation frequency

Single top evidence

Top mass measurement

TEVATRON $B_{\rm s}^0 - \bar{B}_{\rm s}^0$ oscillation frequency

Single top evidence

Top mass measurement

Z+b-jet differential x-sections

TEVATRON $B_{\rm s}^0 - \bar{B}_{\rm s}^0$ oscillation frequency

Single top evidence

Top mass measurement

Z+b-jet differential x-sections

QCD CORRECTIONS TO WEAK BOSONS AND B-JETS

Introduction

QCD corrections to weak bosons and b-jets

- $V \rightarrow 4$ partons: 1-loop massless amplitudes [Bern, Dixon, Kosower, 1997]
- pp \rightarrow Vbb: @NLO, in the 4FS, but with m_b=0 [Campbell, Ellis, 1999]
- $pp \rightarrow Vbj$: @NLO, in the 5FS
- pp \rightarrow Wbb: @NLO, in the 4FS, m_b \neq 0
- pp \rightarrow Zbb: @NLO, in the 4FS, m_b \neq 0
- $pp \rightarrow Wb$: @NLO, in the 5FS ^{[Car}

[FFC, Reina, Wackeroth,2008]

[FFC, Reina, Wackeroth, 2006]

[Campbell,Ellis,FFC,Maltoni,Reina,Wackeroth, Willenbrock,in progress]

[Campbell,Ellis,Maltoni,Willenbrock,

2005.20071

Introduction

LO Feynman diagrams:

 $gg \rightarrow Zb\overline{b}$

The Calculation

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$ Some of the $Wb\bar{b}$ Diagrams

 \rightarrow Counting: 2 diagrams at LO - \sim 30 at NLO - 2 pentagons

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$ Some of the $gg \to Zb\bar{b}$ Diagrams

 \rightarrow Counting: 8 diagrams at LO - ~ 100 at NLO - 12 pentagons

Virtual corrections: calculating $\hat{\sigma}_{ij}^{\text{virt}}$ - The Integrals

$$In^{\{0,\mu_1\dots\mu_n\}}(q_1,\dots,q_{m-1},m_0,\dots,m_{m-1}) = \int \frac{d^dt}{(2\pi)^d} \frac{\{1,t^{\mu_1}\cdots t^{\mu_n}\}}{[t^2-m_0^2][(t+q_1)^2-m_1^2]\cdots [(t+q_1+\dots+q_{m-1})^2-m_{m-1}^2]}.$$

- \longrightarrow Tensor integrals reduced using the Passarino-Veltman (PV) method
- \longrightarrow Intermediate spurious divergencies appearance of inverse powers of GDs

One Check: Comparing to Generalized Unitarity Methods

[Bern,Dixon,Kosower]

[Britto,Cachazo,Feng]

•Extract box contributions using BCF ansatz and compare to coefficient of corresponding box in our calculation

$$d_{1234} = \sum_{t=\ell_{+}} \left(t^2 - m_t^2 \right) \left((t+p_1)^2 - m_t^2 \right) \left((t+p_1+p_2)^2 - m_t^2 \right) \left((t+p_z)^2 - m_t^2 \right) B_{1,t}^{top} \Big|_t$$

•Playground for one-loop unitarity techniques including (up to 2) massive fermions lines

Real corrections: calculating $\hat{\sigma}_{ij}^{\text{real}}$ - PSS δ_s and δ_c cuts [Bergmann,Harris,Owens]

1. Soft cut for extra parton: $E_g \leq \delta_s \sqrt{s}/2$ defines:

$$\hat{\sigma}^{\mathrm{real}} = \hat{\sigma}^{soft} + \hat{\sigma}^{hard}$$

 $\hat{\sigma}^{soft}$ calculated in the soft limit $(E_g \to 0)$.

2. Collinear cut for extra parton: $(1 - \cos \theta) < \delta_c$ defines:

$$\hat{\sigma}^{hard} = \hat{\sigma}^{hard/coll} + \hat{\sigma}^{hard/non-coll}$$

 $\hat{\sigma}^{hard/coll}$ calculated in the collinear limit $(\theta \to 0)$.

The Calculation

 $\mathcal{O}(\alpha_s)$ corrections: combining virtual and real pieces

- \longrightarrow After renormalization, $\hat{\sigma}^{\text{virt}}$ is UV finite
- \longrightarrow IR-divergencies of $\hat{\sigma}^{\text{virt}}$ canceled by IR-divergencies of $\hat{\sigma}^{\text{real}}$
- \longrightarrow Remaining IR-divergencies reabsorbed into PDFs
- \longrightarrow Final Hadronic cross section is finite

Summary of LO and NLO Zbb total cross sections, for both massive and massless

Cross Section	m _b ≠0 (pb) [ratio]	m _b =0 (pb) [ratio]		
$\sigma^{ m LO}$	2.21 [-]	2.37 [-]		
$\sigma^{\rm NLO}$ inclusive	3.39 [1.53]	3.64 [1.54]		
$\sigma^{\rm NLO}$ exclusive	2.80 [1.23]	3.01 [1.24]		

cuts:
$$p_t > 15 \text{ GeV}$$

 $|\eta| < 2$
 $R = 0.7$
Massless results: [MCFN]
 $\mu_r = \mu_f = M_Z + 2m_b$

The trouble with K-factors!

...better a rescaling!

$$\Delta \sigma = \sigma^{\text{NLO}}(m_b \neq 0) - \sigma^{\text{NLO}}(m_b = 0) \frac{\sigma^{\text{LO}}(m_b \neq 0)}{\sigma^{\text{LO}}(m_b = 0)}$$
Results

...effects similar to Zbb, so let's look some data relevant to ongoing searches at CDF and DZero:

^		- 41				
	In	വ	Δ	Т1		r
J J		<u> </u>	C.	U	וע	
-			-	_	- 1	-

cuts: $p_t(lead) > 25 \text{ GeV}$ $|\eta(lead)| < 2.5$ $p_t(sub-lead) > 15 \text{ GeV}$ $|\eta(sub-lead)| < 3.4$ R = 0.7LO: 2.78 pb NLO: 3.34 pb t tbar production cuts: $p_t(lead) > 40 \text{ GeV}$ $|\eta(lead)| < 2.5$ $p_t(sub-lead) > 20 \text{ GeV}$ $|\eta(sub-lead)| < 3.4$ R = 0.7LO: 1.30 pb NLO: 1.37 pb

Wbb@the Tevatron (some mbb and Delta_R dists for t tbar)

W b + X: divide et impera

IN PROGRESS

W b @ Tevatron & LHC: -preliminary-

	Exclusive cross sections (pb)		
Collider	Wb	$W(b\overline{b})$	
TeV $W^+(=W^-)$	(5.27+0.75=6.02) $8.03+1.27=9.30$	(2.66) 3.73-0.02=3.71	
LHC W^+	(30.1+54.3=84.4) 40.0+94.7=134.7	(17.6) 22.7+11.7=34.4	
LHC W^-	(21.6+31.4=53.0) 29.8+56.9=86.7	(12.9) 17.2+6.5=23.7	

Results

SUMMARY and OUTLOOK

W/Z bb @ NLO

- We observe considerably reduction of scale dependence
- Corrections are sizable, and with non-trivial rescaling factor

Wb & W(bb) @ NLO

- Presented preliminary results
- Corrections are quite considerable
- We observe scale dependence improvement
- Tevatron LHC qualitative difference

Future work

- Zb
- Impact on b-pdf studies
- Gamma b bbar, t<->b
- Playground for Unitarity techniques with a massive fermion line